A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery

Materials Today Energy - Tập 21 - Trang 100763 - 2021
L. Hua1,2, W. Lu1, T. Li1, P. Xu1, H. Zhang1, X. Li1
1Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Zhang, 2019, Progress and perspectives of flow battery technologies, Electrochem. Energy Rev., 2, 492, 10.1007/s41918-019-00047-1 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Chen, 2018, Recent progress in organic redox flow batteries: active materials, electrolytes and membranes, J. Energy Chem., 27, 1304, 10.1016/j.jechem.2018.02.009 Peng, 2018, Gradient-distributed metal–organic framework–based porous membranes for nonaqueous redox flow batteries, Adv. Energy Mater., 8, 1802533, 10.1002/aenm.201802533 Gao, 2019, Journal of energy chemistry in its 6th anniversary, J. Energy Chem., 39, 276, 10.1016/j.jechem.2019.05.025 Yuan, 2018, Ion conducting membranes for aqueous flow battery systems, Chem. Commun., 54, 7570, 10.1039/C8CC03058H Wang, 2019, A TiN nanorod array 3D hierarchical composite electrode for ultrahigh-power-density bromine-based flow batteries, Adv. Mater., 31, 1904690, 10.1002/adma.201904690 Zhao, 2014, A reversible Br2/Br- redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries, Energy Environ. Sci., 7, 1990, 10.1039/C4EE00407H Kim, 2018, Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery, J. Membr. Sci., 564, 852, 10.1016/j.memsci.2018.07.091 Zhao, 2005, Nickel foam and carbon felt applications for sodium poly sulfide/bromine redox flow battery electrodes, Electrochim. Acta, 51, 1091, 10.1016/j.electacta.2005.06.008 Cho, 2013, High performance hydrogen/bromine redox flow battery for grid-scale energy storage, J. Electrochem. Soc., 160, 10.1149/2.006308jes Khataee, 2018, Performance optimization of differential pH quinone-bromide redox flow battery, J. Electrochem. Soc., 165, A3918, 10.1149/2.0681816jes Kim, 2019, 1,2-Dimethylimidazole based bromine complexing agents for vanadium bromine redox flow batteries, Int. J. Hydrog. Energy, 44, 12024, 10.1016/j.ijhydene.2019.03.050 Lai, 2013, A novel single flow zinc-bromine battery with improved energy density, J. Power Sources, 235, 1, 10.1016/j.jpowsour.2013.01.193 Zhou, 2004, Research on zinc-bromine flow battery technology, Battery, 34, 442 Jia, 2020, Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70, 104523, 10.1016/j.nanoen.2020.104523 Luo, 2019, A high-performance dual-redox electrochemical capacitor using stabilized Zn2+/Zn anolyte and Br3ˉ/Brˉ catholyte, J. Power Sources, 436, 226843, 10.1016/j.jpowsour.2019.226843 Schneider, 2016, The influence of novel bromine sequestration agents on zinc/bromine flow battery performance, RSC Adv., 6, 110548, 10.1039/C6RA23446A Cathro, 1986, Selection of quaternary ammonium bromides for use in zinc/bromine cells, J. Power Sources, 18, 349, 10.1016/0378-7753(86)80091-X Hoobin, 1989, Stability of zinc/bromine battery electrolytes, J. Appl. Electrochem., 19, 943, 10.1007/BF01007946 Mastragostino, 1983, Polymeric salt as bromine complexing agent in a Zn-Br2 model battery, Electrochim. Acta, 28, 501, 10.1016/0013-4686(83)85034-8 Vogel, 1991, On some problems of the zinc-bromine system as an electric energy storage system of higher efficiency-I. Kinetics of the bromine electrode, Electrochim. Acta, 36, 1403, 10.1016/0013-4686(91)85326-3 Arnold, 1991, Durability of polymeric materials used in zinc/bromine flow batteries Sheng, 2019, Recent advances in the selective membrane for aqueous redox flow batteries, Mater. Today Nano, 7, 100044, 10.1016/j.mtnano.2019.100044 Cathro, 1988, Performance of porous plastic separators in zinc/bromine cells, J. Power Sources, 22, 29, 10.1016/0378-7753(88)80004-1 Chieng, 1992, Modification of Daramic, microporous separator, for redox flow battery applications, J. Membr. Sci., 75, 81, 10.1016/0376-7388(92)80008-8 Shao, 2004, Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells, J. Membr. Sci., 229, 43, 10.1016/j.memsci.2003.09.014 Tang, 2007, A degradation study of Nafion proton exchange membrane of PEM fuel cells, J. Power Sources, 170, 85, 10.1016/j.jpowsour.2007.03.061 Lu, 2018, Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application, Energy Stor. Mater., 10, 40, 10.1016/j.ensm.2017.08.004 Lee, 2019, High-energy efficiency membraneless flowless Zn-Br battery: utilizing the electrochemical–chemical growth of polybromides, Adv. Mater., 31, 1904524, 10.1002/adma.201904524 Xie, 2019, Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage, Energy Environ. Sci., 12, 1834, 10.1039/C8EE02825G Yao, 2021, Assessment methods and performance metrics for redox flow batteries, Nat. Energy, 10.1038/s41560-020-00772-8