A highly selective electrochemical impedimetric sensor for imidacloprid determination based on WO3/MoS2 nanosheets/molecularly imprinted polymer composite

Rare Metals - Trang 1-7 - 2023
Long-Hua Ding1, Ya-Wen Wang1, Qiu-Wen Li1, Li-Li Zhang2, Ai-Zhu Wang1
1Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
2HCA Florida Healthcare Westside/Northwest Hospital Internal Medicine, Plantation, USA

Tóm tắt

In this study, an electrochemical impedimetric sensor was established for imidacloprid (IMI) detection based on WO3/MoS2 and molecular imprinted polymer (MIP) composite. MIP layer was prepared on electrode surface by electropolymerization of o-phenylenediamine (o–PD) in the presence of IMI template, which ensured the specific recognization toward IMI. The electrochemical properties of fluorine-doped Tin oxide (FTO)/WO3/MoS2/MIP electrode were studied via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared sensor exhibits low detection limit (0.1 μmol·L−1) with a wide concentration range from 0.5 to 70.0 μmol·L−1. Moreover, this sensor shows high recoveries in real sample testing, revealing good application prospect.

Tài liệu tham khảo

Umetsu N, Shirai Y. Development of novel pesticides in the 21st century. J Pestic Sci. 2020;45(1–2):54. https://doi.org/10.1584/jpestics.D20-201. Furst AL, Francis MB. Impedance-based detection of bacteria. Chem Rev. 2019;119(1):700. https://doi.org/10.1021/acs.chemrev.8b00381. Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science. 2021;372(6537):81. https://doi.org/10.1126/science.abe1148. Li S, Yu PP, Zhou C, Tong L, Li DX, Yu ZG, Zhao YL. Analysis of pesticide residues in commercially available chenpi using a modified QuEChERS method and GC-MS/MS determination. J Pharm Anal. 2020;10(1):60. https://doi.org/10.1016/j.jpha.2019.01.005. Ly TK, Ho TD, Behra P, Nhu-Trang TT. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem. 2020;326:126928. https://doi.org/10.1016/j.foodchem.2020.126928. Narenderan ST, Meyyanathan SN, Babu B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res Int. 2020;133:109141. https://doi.org/10.1016/j.foodres.2020.109141. Sun YZ, Wei JC, Zou J, Cheng ZM, Huang ZM, Gu LQ, Zhong ZF, Li SL, Wang YT, Li P. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. J Pharm Anal. 2021;11(5):653. https://doi.org/10.1016/j.jpha.2020.09.002. Ding LH, Zhang LN, Yang HM, Liu HY, Ge SG, Yu JH. Electrochemical biosensor for p53 gene based on HRP-mimicking DNAzyme-catalyzed deposition of polyaniline coupled with hybridization chain reaction. Sensor Actuat B Chem. 2018;268:210. https://doi.org/10.1016/j.snb.2018.04.126. Ding LH, Yan F, Zhang YH, Liu L, Yu X, Liu H. Microflowers comprised of Cu/CuxO/NC nanosheets as electrocatalysts and horseradish peroxidase mimics. ACS Appl Nano Mater. 2020;3(1):617. https://doi.org/10.1021/acsanm.9b02156. Wang LW, Liu L, You Z, Zhang LW, Zhang XD, Ren N, Liu H, Yu X. Surface amorphization oxygen vacancy-rich porous Sn3Ox nanosheets for boosted photoelectrocatalytic bacterial inactivation. Rare Met. 2023;42(5):1508. https://doi.org/10.1007/s12598-022-02208-6. Yang RQ, Liang N, Chen XY, Wang LW, Song GX, Ji YC, Ren N, Lü YW, Zhang J, Yu X. Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. Int J Miner Metall Mater. 2021;28(1):150. https://doi.org/10.1007/s12613-020-2131-z. Ansari S, Ansari MS, Satsangee SP, Jain R. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J Pharm Anal. 2021;11(1):57. https://doi.org/10.1016/j.jpha.2020.03.013. Ding LH, Ma C, Li L, Zhang LN, Yu JH. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J Electroanal Chem. 2016;783:176. https://doi.org/10.1016/j.jelechem.2016.11.025. Guo JW, Yang ZW, Liu XL, Zhang LW, Guo WB, Zhang J, Ding LH. 2D Co metal-organic framework nanosheet as an oxidase-like nanozyme for sensitive biomolecule monitoring. Rare Met. 2023;42(3):797. https://doi.org/10.1007/s12598-022-02179-8. Li XX, Liu XC, Liu C, Zeng JM, Qi XP. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten. 2023;5(1):100. https://doi.org/10.1007/s42864-022-00144-7. Khan A, Nilam B, Rukhsar C, Sayali G, Mandlekar B, Kadam A. A review article based on composite graphene @tungsten oxide thin films for various applications. Tungsten. 2022;5(4):391. https://doi.org/10.1007/s42864-022-00158-1. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556. https://doi.org/10.1038/s41586-018-0347-0. Shen SK, Cui XL, Guo CY, Dong X, Zhang XF, Cheng XL, Huo LH, Xu YM. Sensing mechanism of Ag/alpha-MoO3 nanobelts for H2S gas sensor. Rare Met. 2021;40(6):1545. https://doi.org/10.1007/s12598-020-01647-3 Liu L, Guo JW, Liu XL, Wang AZ, Yu X, Ding LH. Photoelectrochemical clothianidin detection based on a WO3/CdS heterostructure coated with a molecularly imprinted thin film. Anal Sens. 2022;2(5):e202200029. https://doi.org/10.1002/anse.202200029. Azam A, Kim J, Park J, Novak TG, Tiwari AP, Song SH, Kim B, Jeon S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 2018;18(9):5646. https://doi.org/10.1021/acs.nanolett.8b02150. Ilager D, Seo H, Kalanur SS, Shetti NP, Aminabhavi TM. A novel sensor based on WO3·0.33H2O nanorods modified electrode for the detection and degradation of herbicide, carbendazim. J Environ Mange. 2021;279:111611. https://doi.org/10.1016/j.jenvman.2020.111611. Song JL, Lin XH, Jiang N, Huang MH. Carbon-doped WO3 electrochemical aptasensor based on Box-Behnken strategy for highly-sensitive detection of tetracycline. Food Chem. 2022;367:130564. https://doi.org/10.1016/j.foodchem.2021.130564. Zou LR, Sang DD, Yao Y, Wang XT, Zheng YY, Wang NZ, Wang C, Wang QL. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Met. 2022;42(1):17. https://doi.org/10.1007/s12598-022-02113-y Haupt K, Rangel PXM, Bui BTS. Molecularly imprinted polymers: antibody mimics for bioimaging and therapy. Chem Rev. 2020;120(17):9554. https://doi.org/10.1021/acs.chemrev.0c00428. Rebelo P, Costa-Rama E, Seguro I, Pacheco JG, Nouws HPA, Cordeiro MNDS, Delerue-Matos C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron. 2021;172: 112719. https://doi.org/10.1016/j.bios.2020.112719. Arabi M, Ostovan A, Zhang ZY, Wang YQ, Mei RC, Fu LW, Wang XY, Ma JP, Chen LX. Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron. 2021;174:112825. https://doi.org/10.1016/j.bios.2020.112825. Hojatpanah MR, Khanmohammadi A, Khoshsafar H, Hajian A, Bagheri H. Construction and application of a novel electrochemical sensor for trace determination of uranium based on ion-imprinted polymers modified glassy carbon electrode. Chemosphere. 2022;292:133435. https://doi.org/10.1016/j.chemosphere.2021.133435. Zeinali S, Khoshsafar H, Rezaei M, Bagheri H. Fabrication of a selective and sensitive electrochemical sensor modified with magnetic molecularly imprinted polymer for amoxicillin. Anal Bioanal Chem Res. 2018;5(2):195. https://doi.org/10.22036/abcr.2018.104434.1174. Chen ZB, Jin HH, Yang ZG, He DP. Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Met. 2023;42(4):1098. https://doi.org/10.1007/s12598-022-02129-4. Wang RT, Wang SJ, Jin DD, Zhang YB, Cai YJ, Ma JM, Zhang L. Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Stor Mater. 2017;9:195. https://doi.org/10.1016/j.ensm.2017.07.013.