A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

Nature Materials - Tập 8 Số 6 - Trang 500-506 - 2009
Xiulei Ji1, Kyu Tae Lee2, Linda F. Nazar2
1University of Waterloo, Department of Chemistry, Waterloo, Ontario N2L 3G1, Canada.
2Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Winter, M. & Brodd, R. Batteries, fuel cells and supercapacitors. Chem. Rev. 104, 4245–4269 (2004).

Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ion. 179, 752–760 (2008).

Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

Shim, J., Striebel, K. A. & Cairns, E. J. The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321–A1325 (2002).

Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

Peled, E. & Yamin, H. Lithium/sulfur organic battery. Prog. Batteries Sol. Cells 5, 56–58 (1984).

Chu, M.-Y. Rechargeable positive electrodes. US Patent US5686201 (1997).

Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993).

Dean, J. A. (ed.) Lange’s Handbook of Chemistry 3rd edn,3–5 (McGraw-Hill, 1985).

Cunningham, P. T., Johnson, S. A. & Cairns, E. J. Phase equilibria in lithium–chalcogen systems: Lithium–sulfur. J. Electrochem. Soc. 119, 1448–1450 (1972).

Choi, J.-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007).

Rauh, R. D., Shuker, F. S., Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977).

Cheon, S.-E. et al. Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J. Electrochem. Soc. 150, A800–A805 (2003).

Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008).

Yuan, L. X. et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 8, 610–614 (2006).

Ryu, H.-S. et al. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 163, 201–206 (2006).

Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008).

Chung, K.-I., Kim, W.-S. & Choi, Y.-K. Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J. Electroanal. Chem. 566, 263–267 (2004).

Visco, S. J., Nimon, Y. S. & Katz, B. D. Ionically conductive composites for protection of active metal anodes. US Patent 7,282,296, October 16 (2007).

Skotheim, T. A., Sheehan, C. J., Mikhaylik, Y. V. & Affinito, J. Lithium anodes for electrochemical cells. US patent 7247,408, July 24 (2007).

Akridge, J. R., Mikhaylik, Y. V. & White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 175, 243–245 (2004).

Mikhaylik, Y. V. & Akridge, J. R. Low temperature performance of Li/S batteries. J. Electrochem. Soc. 150, A306–A311 (2003).

Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).

Cheon, S.-E. et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 151, A2067–A2073 (2004).

Song, M.-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathode for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).

Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621 (2008).

Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template mediated structural transformations. J. Phys. Chem. B 103, 7743–7746 (1999).

Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).

Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007).

Jiao, F., Shaju, K. M. & Bruce, P. G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 117, 6708–6711 (2005).

Ji, X., Herle, P. S., Rho, Y. H. & Nazar, L. F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem. Mater. 19, 374–383 (2007).

Grigoriants, I. et al. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chem. Commun. 921–923 (2005).

Joo, S. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

Ryoo, R., Joo, S., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

Lei, J. et al. Immobilization of enzymes in mesoporous materials: Controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121–128 (2004).

Miessler, G. L. & Tarr, D. A. Inorganic Chemistry (Pearson Education, 1998).

Landau, M. V., Vradman, L., Wang, X. & Titelman, L. High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: Preparation, texture and stability. Micropor. Mesopor. Mater. 78, 117–129 (2005).

Kim, J., Lee, J. & Hyeon, T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon 42, 2711–2719 (2004).

Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery. Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988).

Kumaresan, K., Mikhaylik, Y. & White, R. E. A mathematical model for a lithium–sulfur cell. J. Electrochem. Soc. 155, A576–A582 (2008).

Gierszal, K. P., Kim, T.-W., Ryoo, R. & Jaroniec, M. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3hd mesostructures as templates. J. Phys. Chem. B 109, 23263–23268 (2005).

Yu, C., Fan, J., Tian, B. & Zhao, D. Morphology development of mesoporous materials: A colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004).

Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000).

Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951).

Xu, K. & Angell, C. A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. J. Electrochem. Soc. 145, L70–L72 (1998).