Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chữ ký gen 70 với nguy cơ cao không liên quan đến việc phát hiện sự lan tỏa của tế bào khối u đến tủy xương
Tóm tắt
Chữ ký gen 70 (70-GS) là một công cụ tiên đoán, phân loại bệnh nhân vào các nhóm nguy cơ để đánh giá nhu cầu hóa trị bổ trợ. Sự lan tỏa của tế bào khối u đến tủy xương là một dấu hiệu của bệnh còn lại tối thiểu và liên quan đến sống sót kém. Trong nghiên cứu này, chúng tôi nhằm đánh giá xem 70-GS có liên quan đến sự hiện diện của các tế bào khối u lan tỏa (DTCs) trong tủy xương của bệnh nhân ung thư vú giai đoạn đầu hay không. Ở những bệnh nhân ung thư vú giai đoạn đầu dương tính với thụ thể hormone và âm tính với HER2, chữ ký 70-GS được xác định và sự hiện diện của DTCs được đánh giá bằng phương pháp nhuộm miễn dịch sinh học hoá với nhuộm cytokeratin bằng kháng thể A45-B/B3. 149 bệnh nhân đã được đưa vào phân tích. 40 (27%) có chữ ký 70-GS nguy cơ cao và 35 (23%) có DTCs có thể phát hiện trong tủy xương của họ. 9 (22%) trong số 40 bệnh nhân có 70-GS nguy cơ cao và 26 (24%) trong số 109 bệnh nhân có 70-GS nguy cơ thấp dương tính với DTCs (p = 0.863). Vì cả 70-GS và việc phát hiện DTC đều được biết đến là các yếu tố tiên đoán nhưng dường như không có tương quan, cần có một nghiên cứu theo dõi trên một mẫu lớn hơn để đánh giá liệu sự kết hợp của hai yếu tố này có khả năng phân tầng tốt hơn nguy cơ tái phát ở bệnh nhân ung thư vú giai đoạn đầu hay không.
Từ khóa
#Chữ ký gen #ung thư vú #tế bào khối u lan tỏa #DTCs #tủy xương #dự đoán nguy cơTài liệu tham khảo
Hosseini H, Obradović MMS, Hoffmann M et al (2016) Early dissemination seeds metastasis in breast cancer. Nature. https://doi.org/10.1038/nature20785
Olivotto IA, Bajdik CD, Ravdin PM et al (2005) Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 23:2716–2725. https://doi.org/10.1200/JCO.2005.06.178
Wishart GC, Bajdik CD, Dicks E et al (2012) PREDICT plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer 107:800–807. https://doi.org/10.1038/bjc.2012.338
Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800. https://doi.org/10.1056/NEJMra0801289
van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. https://doi.org/10.1038/415530a
van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A Gene-Expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. https://doi.org/10.1056/NEJMoa021967
Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192. https://doi.org/10.1093/jnci/djj329
Cardoso F, van’t Veer LJ, Bogaerts J et al (2016) 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–729. https://doi.org/10.1056/NEJMoa1602253
Schlimok G, Funke I, Holzmann B et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci 84:8672–8676. https://doi.org/10.1073/pnas.84.23.8672
Müller P, Weckermann D, Riethmüller G, Schlimok G (1996) Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization. Cancer Genet Cytogenet 88:8–16. https://doi.org/10.1016/0165-4608(95)00189-1
Husemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68. https://doi.org/10.1016/j.ccr.2007.12.003
Schmidt-Kittler O, Ragg T, Daskalakis A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci 100:7737–7742. https://doi.org/10.1073/pnas.1331931100
Hartkopf AD, Taran FA, Wallwiener M et al (2014) Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients—results from a large single-centre analysis. Eur J Cancer 50:2550–2559. https://doi.org/10.1016/j.ejca.2014.06.025
Domschke C, Diel IJ, Englert S et al (2013) Prognostic value of disseminated tumor cells in the bone marrow of patients with operable primary breast cancer: a long-term follow-up study. Ann Surg Oncol 20:1865–1871. https://doi.org/10.1245/s10434-012-2814-4
Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802. https://doi.org/10.1056/NEJMoa050434
Fehm T, Braun S, Muller V et al (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107:885–892. https://doi.org/10.1002/cncr.22076
Lips EH, Mukhtar RA, Yau C et al (2012) Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer. Breast Cancer Res Treat 136:35–43. https://doi.org/10.1007/s10549-012-2233-z
Straver ME, Glas AM, Hannemann J et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119:551–558. https://doi.org/10.1007/s10549-009-0333-1
Hartkopf AD, Wallwiener M, Kommoss S et al (2016) Detection of disseminated tumor cells from the bone marrow of patients with early breast cancer is associated with high 21-gene recurrence score. Breast Cancer Res Treat 156:91–95. https://doi.org/10.1007/s10549-016-3728-9
Bartlett JMS, Bayani J, Marshall A et al (2016) Comparing breast cancer multiparameter tests in the optima prelim trial: no test is more equal than the others. J Natl Cancer Inst 108:1–9. https://doi.org/10.1093/jnci/djw050
Kim C, Baker J, Ph D et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. https://doi.org/10.1056/NEJMoa041588
Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162. https://doi.org/10.1158/1078-0432.CCR-04-1110
Janni WJ, Rack B, Terstappen LWMM et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593. https://doi.org/10.1158/1078-0432.CCR-15-1603
Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695. https://doi.org/10.1016/S1470-2045(12)70209-7
Bidard F-C, Proudhon C, Pierga J-Y (2016) Circulating tumor cells in breast cancer. Mol Oncol 10:418–430. https://doi.org/10.1016/j.molonc.2016.01.001
Buus R, Sestak I, Kronenwett R et al (2016) Comparison of endopredict and epclin with oncotype dx recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst 108:1–7. https://doi.org/10.1093/jnci/djw149