A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media
Tài liệu tham khảo
Fibich, 2001, Vectorial and random effects in self-focusing and in multiple filamentation, Physica D, 157, 112, 10.1016/S0167-2789(01)00293-7
Fibich, 2001, High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering, J. Comput. Phys., 171, 632, 10.1006/jcph.2001.6800
Sulem, 1999, vol. 139
Boyd, 2008
Weinstein, 1983, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567, 10.1007/BF01208265
Marburger, 1978, Theory of a lossless nonlinear Fabry–Perot interferometer, Phys. Rev. A, 17, 335, 10.1103/PhysRevA.17.335
Wilhelm, 1970, Analytical solution of the boundary-value problem for the nonlinear Helmholtz equation, J. Math. Phys., 11, 824, 10.1063/1.1665218
Chen, 1987, Optical response of a nonlinear dielectric film, Phys. Rev. B, 35, 524, 10.1103/PhysRevB.35.524
Chen, 1987, Optical response of nonlinear multilayer structures: bilayers and superlattices, Phys. Rev. B, 36, 6269, 10.1103/PhysRevB.36.6269
Baghdasaryan, 1999, Problem of plane EM wave self-action in multilayer structure: an exact solution, Optical Quant. Electron., 31, 1059, 10.1023/A:1007024312874
Midrio, 2001, Shooting technique for the computation of plane-wave reflection and transmission through one-dimensional nonlinear inhomogeneous dielectric structures, J. Opt. Soc. Am. B – Opt. Phys., 18, 1866, 10.1364/JOSAB.18.001866
Kwan, 2004, Computing optical bistability in one-dimensional nonlinear structures, Opt. Commun., 238, 169, 10.1016/j.optcom.2004.04.025
Petráček, 2006, Frequency-domain simulation of electromagnetic wave propagation in one-dimensional nonlinear structures, Opt. Commun., 265, 331, 10.1016/j.optcom.2006.03.030
Akhmediev, 1993, Generation of a train of three-dimensional optical solitons in a self-focusing medium, Phys. Rev. A, 47, 1358, 10.1103/PhysRevA.47.1358
Akhmediev, 1993, Does the nonlinear Schrödinger equation correctly describe beam propagation?, Opt. Lett., 18, 411, 10.1364/OL.18.000411
Feit, 1988, Beam nonparaxiality, filament formation and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. B, 5, 633, 10.1364/JOSAB.5.000633
Fibich, 1996, Small beam nonparaxiality arrests self-focussing of optical beams, Phys. Rev. Lett., 76, 4356, 10.1103/PhysRevLett.76.4356
Sever, 2006, An existence theorem for some semilinear elliptic systems, J. Differen. Equat., 226, 572, 10.1016/j.jde.2006.02.014
Baruch, 2007, High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension, J. Comput. Phys., 227, 820, 10.1016/j.jcp.2007.08.022
Fibich, 2005, Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions, J. Comput. Phys., 210, 183, 10.1016/j.jcp.2005.04.015
Baruch, 2007, Numerical solution of the nonlinear Helmholtz equation with axial symmetry, J. Comput. Appl. Math., 204, 477, 10.1016/j.cam.2006.01.048
Cohen, 2002, Collisions between optical spatial solitons propagating in opposite directions, Phys. Rev. Lett., 89, 133901, 10.1103/PhysRevLett.89.133901
Harari, 1995, Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119, 252, 10.1006/jcph.1995.1134
Singer, 1998, High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 163, 343, 10.1016/S0045-7825(98)00023-1
Baruch, 2007, Fourth order scheme for wave-like equations in frequency space with discontinuities in the coefficients, Commun. Comput. Phys., 5, 442
M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, With contributions by A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock, seventh (expanded) ed., Cambridge University Press, Cambridge, 1999.
F.G. Tricomi, Integral Equations, Dover Publications Inc., New York, 1985, reprint of the 1957 original.
Baruch, 2008, Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams, Opt. Exp., 16, 13323, 10.1364/OE.16.013323
P.M. Morse, H. Feshbach, Methods of Theoretical Physics, 2 vols., International Series in Pure and Applied Physics, McGraw-Hill Book Co., Inc., New York, 1953.
M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag Berlin GmbH, Berlin, 1999 (translated from the Russian manuscript by Vladimir Nazaikinskii).
Tsynkov, 1998, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27, 465, 10.1016/S0168-9274(98)00025-7
Ryaben’kii, 1964, Necessary and sufficient conditions for good definition of boundary value problems for systems of ordinary difference equations, USSR Comput. Math. Math. Phys., 4, 43, 10.1016/0041-5553(64)90105-3
Jackson, 1998
Chamorro-Posada, 1998, Non-paraxial solitons, J. Mod. Opt., 45, 1111, 10.1080/09500349808230902
Fibich, 1999, Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension, SIAM J. Appl. Math., 60, 183, 10.1137/S0036139997322407
Ryaben’kii, 2002, vol. 30
Landau, 1984, vol. 8