A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media

Journal of Computational Physics - Tập 228 - Trang 3789-3815 - 2009
G. Baruch1, G. Fibich1, S. Tsynkov2
1Department of Applied Mathematics, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695, USA

Tài liệu tham khảo

Fibich, 2001, Vectorial and random effects in self-focusing and in multiple filamentation, Physica D, 157, 112, 10.1016/S0167-2789(01)00293-7 Fibich, 2001, High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering, J. Comput. Phys., 171, 632, 10.1006/jcph.2001.6800 Sulem, 1999, vol. 139 Boyd, 2008 Weinstein, 1983, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567, 10.1007/BF01208265 Marburger, 1978, Theory of a lossless nonlinear Fabry–Perot interferometer, Phys. Rev. A, 17, 335, 10.1103/PhysRevA.17.335 Wilhelm, 1970, Analytical solution of the boundary-value problem for the nonlinear Helmholtz equation, J. Math. Phys., 11, 824, 10.1063/1.1665218 Chen, 1987, Optical response of a nonlinear dielectric film, Phys. Rev. B, 35, 524, 10.1103/PhysRevB.35.524 Chen, 1987, Optical response of nonlinear multilayer structures: bilayers and superlattices, Phys. Rev. B, 36, 6269, 10.1103/PhysRevB.36.6269 Baghdasaryan, 1999, Problem of plane EM wave self-action in multilayer structure: an exact solution, Optical Quant. Electron., 31, 1059, 10.1023/A:1007024312874 Midrio, 2001, Shooting technique for the computation of plane-wave reflection and transmission through one-dimensional nonlinear inhomogeneous dielectric structures, J. Opt. Soc. Am. B – Opt. Phys., 18, 1866, 10.1364/JOSAB.18.001866 Kwan, 2004, Computing optical bistability in one-dimensional nonlinear structures, Opt. Commun., 238, 169, 10.1016/j.optcom.2004.04.025 Petráček, 2006, Frequency-domain simulation of electromagnetic wave propagation in one-dimensional nonlinear structures, Opt. Commun., 265, 331, 10.1016/j.optcom.2006.03.030 Akhmediev, 1993, Generation of a train of three-dimensional optical solitons in a self-focusing medium, Phys. Rev. A, 47, 1358, 10.1103/PhysRevA.47.1358 Akhmediev, 1993, Does the nonlinear Schrödinger equation correctly describe beam propagation?, Opt. Lett., 18, 411, 10.1364/OL.18.000411 Feit, 1988, Beam nonparaxiality, filament formation and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. B, 5, 633, 10.1364/JOSAB.5.000633 Fibich, 1996, Small beam nonparaxiality arrests self-focussing of optical beams, Phys. Rev. Lett., 76, 4356, 10.1103/PhysRevLett.76.4356 Sever, 2006, An existence theorem for some semilinear elliptic systems, J. Differen. Equat., 226, 572, 10.1016/j.jde.2006.02.014 Baruch, 2007, High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension, J. Comput. Phys., 227, 820, 10.1016/j.jcp.2007.08.022 Fibich, 2005, Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions, J. Comput. Phys., 210, 183, 10.1016/j.jcp.2005.04.015 Baruch, 2007, Numerical solution of the nonlinear Helmholtz equation with axial symmetry, J. Comput. Appl. Math., 204, 477, 10.1016/j.cam.2006.01.048 Cohen, 2002, Collisions between optical spatial solitons propagating in opposite directions, Phys. Rev. Lett., 89, 133901, 10.1103/PhysRevLett.89.133901 Harari, 1995, Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119, 252, 10.1006/jcph.1995.1134 Singer, 1998, High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 163, 343, 10.1016/S0045-7825(98)00023-1 Baruch, 2007, Fourth order scheme for wave-like equations in frequency space with discontinuities in the coefficients, Commun. Comput. Phys., 5, 442 M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, With contributions by A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock, seventh (expanded) ed., Cambridge University Press, Cambridge, 1999. F.G. Tricomi, Integral Equations, Dover Publications Inc., New York, 1985, reprint of the 1957 original. Baruch, 2008, Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams, Opt. Exp., 16, 13323, 10.1364/OE.16.013323 P.M. Morse, H. Feshbach, Methods of Theoretical Physics, 2 vols., International Series in Pure and Applied Physics, McGraw-Hill Book Co., Inc., New York, 1953. M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag Berlin GmbH, Berlin, 1999 (translated from the Russian manuscript by Vladimir Nazaikinskii). Tsynkov, 1998, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27, 465, 10.1016/S0168-9274(98)00025-7 Ryaben’kii, 1964, Necessary and sufficient conditions for good definition of boundary value problems for systems of ordinary difference equations, USSR Comput. Math. Math. Phys., 4, 43, 10.1016/0041-5553(64)90105-3 Jackson, 1998 Chamorro-Posada, 1998, Non-paraxial solitons, J. Mod. Opt., 45, 1111, 10.1080/09500349808230902 Fibich, 1999, Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension, SIAM J. Appl. Math., 60, 183, 10.1137/S0036139997322407 Ryaben’kii, 2002, vol. 30 Landau, 1984, vol. 8