A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
Tóm tắt
This paper presents a high-order computational scheme for numerical solution of a time-fractional diffusion equation (TFDE). This scheme is discretized in time by means of L1-scheme and discretized in space using a compact finite difference method. Stability analysis of the method is discussed. Further, convergence analysis of the present numerical scheme is established and we show that this scheme is of $$O({\Delta t}^{2-\alpha }+{\Delta x}^{4})$$ convergence, where $$\alpha \in (0,1)$$ is the order of fractional derivative (FD) appearing in the governing equation and $$\Delta t$$ and $$\Delta x$$ are the step sizes in temporal and spatial direction, respectively. Three numerical examples are considered to illustrate the accuracy and performance of the method. In order to show the advantage of the proposed method we compare our results with those obtained by finite element method and B-spline method. Comparison reveals that the proposed method is fast convergent and highly accurate. Moreover, the effect of $$\alpha$$ on the numerical solution of TFDE is investigated. The CPU time of the present method is provided.
Tài liệu tham khảo
citation_title=Fractional Differential Equations; citation_publication_date=1999; citation_id=CR1; citation_author=I Podlubny; citation_publisher=Academic
citation_journal_title=Phys. A; citation_title=Fractional diffusion equation and relaxation in complex viscoelastic materials; citation_author=M Giona, S Cerbelli, HE Roman; citation_volume=191; citation_publication_date=1992; citation_pages=449-453; citation_doi=10.1016/0378-4371(92)90566-9; citation_id=CR2
citation_title=Mainardi, Fractals and Fractional Calculus Continuum Mechanics; citation_publication_date=1997; citation_id=CR3; citation_author=F Mainardi; citation_publisher=Springer Verlag
K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer Verlag, Heidelberg, 217-224 (1999)
citation_journal_title=Math. Method. Appl. Sci.; citation_title=A computational technique for solving the time-fractional Fokker-Planck equation; citation_author=P Roul, T Kumari, V Rohil; citation_volume=45; citation_issue=16; citation_publication_date=2022; citation_pages=9736-9752; citation_doi=10.1002/mma.8332; citation_id=CR5
citation_journal_title=Ann. Nucl. Energy; citation_title=An efficient computational technique for solving a fractional-order model describing dynamics of neutron flux in a nuclear reactor; citation_author=P Roul, V Rohil, G Espinosa-Paredes, K Obaidurrahman; citation_volume=185; citation_publication_date=2023; citation_doi=10.1016/j.anucene.2023.109733; citation_id=CR6
citation_journal_title=Math. Method. Appl. Sci.; citation_title=Design and analysis of a high order computational technique for time-fractional Black-Scholes model describing option pricing; citation_author=P Roul; citation_volume=45; citation_issue=9; citation_publication_date=2022; citation_pages=5592-5611; citation_doi=10.1002/mma.8130; citation_id=CR7
citation_journal_title=Appl. Numer. Math.; citation_title=A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options; citation_author=P Roul; citation_volume=151; citation_publication_date=2020; citation_pages=472-493; citation_doi=10.1016/j.apnum.2019.11.004; citation_id=CR8
citation_journal_title=Appl. Math. Comput.; citation_title=A high order numerical method and its convergence for time-fractional fourth order partial differential equations; citation_author=P Roul, VMK Prasad Goura; citation_volume=366; citation_publication_date=2020; citation_id=CR9
citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=A finite element method for time fractional partial differential equations; citation_author=NJ Ford, J Xiao, Y Yan; citation_volume=14; citation_publication_date=2011; citation_pages=454-474; citation_doi=10.2478/s13540-011-0028-2; citation_id=CR10
citation_journal_title=J. Vib. Control; citation_title=Cubic B-spline collocation method and its application for anomalous fractional diffusion equations in transport dynamic systems; citation_author=K Sayevand, A Yazdani, F Arjang; citation_volume=22; citation_publication_date=2016; citation_pages=2173-2186; citation_doi=10.1177/1077546316636282; citation_id=CR11
citation_journal_title=J. Comput. Phys.; citation_title=Finite difference/spectral approximations for the time fractional diffusion equation; citation_author=Y Lin, C Xu; citation_volume=225; citation_publication_date=2007; citation_pages=1533-1552; citation_doi=10.1016/j.jcp.2007.02.001; citation_id=CR12
citation_journal_title=Comput. Math. Appl.; citation_title=A finite element approximation for a class of Caputo time-fractional diffusion equations; citation_author=MR Sidi Ammi, I Jamiai, DFM Torres; citation_volume=78; citation_publication_date=2019; citation_pages=1334-1344; citation_doi=10.1016/j.camwa.2019.05.031; citation_id=CR13
citation_journal_title=Comput. Math. Appl.; citation_title=Implicit finite difference approximation for time fractional diffusion equations; citation_author=DA Murio; citation_volume=56; citation_publication_date=2008; citation_pages=1138-1145; citation_doi=10.1016/j.camwa.2008.02.015; citation_id=CR14
citation_journal_title=J. Appl. Math. Comput.; citation_title=Implicit difference approximation for the time fractional diffusion equation; citation_author=P Zhuang, F Liu; citation_volume=22; citation_publication_date=2006; citation_pages=87-99; citation_doi=10.1007/BF02832039; citation_id=CR15
citation_journal_title=J. Frac. Calc. Appl.; citation_title=Crank-Nicoloson finite difference method for solving time-fractional diffusion equation; citation_author=NH Sweilam, MM Khader, AMS Mahdy; citation_volume=2; citation_publication_date=2012; citation_pages=1-9; citation_id=CR16
citation_journal_title=Appl. Math. Model.; citation_title=A compact difference scheme for the fractional diffusion-wave equation; citation_author=R Du, R Cao, ZZ Sun; citation_volume=34; citation_publication_date=2010; citation_pages=2998-3007; citation_doi=10.1016/j.apm.2010.01.008; citation_id=CR17
citation_journal_title=J. Comput. Appl. Math.; citation_title=An efficient numerical scheme and its stability analysis for a time-fractional reaction diffusion model; citation_author=P Roul, VMKP Goura; citation_volume=422; citation_publication_date=2023; citation_doi=10.1016/j.cam.2022.114918; citation_id=CR18
citation_journal_title=J. Comput. Phys.; citation_title=Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation; citation_author=Zhang Ya, Z Sun; citation_volume=230; citation_publication_date=2011; citation_pages=8713-8728; citation_doi=10.1016/j.jcp.2011.08.020; citation_id=CR19
citation_journal_title=J. Comput. Appl. Math.; citation_title=A numerical approach for a class of time-fractional reaction-diffusion through exponential B-spline method; citation_author=ASV Ravikanth, N Garg; citation_volume=39; citation_publication_date=2020; citation_pages=37; citation_id=CR20
citation_journal_title=Mathematics; citation_title=High-order approximation to generalized Caputo derivatives and generalized fractional advection-diffusion equations; citation_author=S Kumari, RK Pandey, RP Agarwal; citation_volume=11; citation_publication_date=2023; citation_pages=1200; citation_doi=10.3390/math11051200; citation_id=CR21
citation_journal_title=Math. Methods Appl. Sci.; citation_title=Asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion differential difference equations; citation_author=LS Senthilkumar, S Veerasamy, RP Agarwal; citation_publication_date=2021; citation_doi=10.1002/mma.8064; citation_id=CR22
citation_journal_title=Comput. Appl. Math.; citation_title=Identifying the source function for time fractional diffusion with non-local in time conditions; citation_author=NH Luc, D Baleanu, RP Agarwal, Le D Long; citation_volume=21; citation_publication_date=2021; citation_pages=40159; citation_doi=10.1007/s40314-021-01538-y; citation_id=CR23
citation_journal_title=Comput. Math. Methods; citation_title=An asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion delay differential equations with point source; citation_author=S Sethurathinam, S Veerasamy, R Arasamudi, RP Agarwal; citation_publication_date=2021; citation_doi=10.1002/cmm4.1201; citation_id=CR24