A hierarchical layer of atomic behavior for malicious behaviors prediction

Springer Science and Business Media LLC - Tập 18 Số 4 - Trang 367-382
Mohammad Hadi Alaeiyan1, Saeed Parsa2
1K. N. Toosi University of Technology
2Department of Computer Engineering, Iran University of Science and Technology, Narmak, 16844, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alaeiyan, M., Dehghantanha, A., Dargahi, T., Conti, M., Parsa, S.: A multilabel fuzzy relevance clustering system for malware attack attribution in the edge layer of cyber-physical networks. ACM Trans. Cyber-Phys. Syst. 4(3), 1–22 (2020)

Alaeiyan, M., Parsa, S., Conti, M.: Analysis and classification of context-based malware behavior. Comput. Commun. 136, 76–90 (2019)

Alaeiyan, M.H., Parsa, S.: Automatic loop detection in the sequence of system calls. In 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 720–723. IEEE (2015)

Alazab, M., Venkataraman, S., Watters, P.: Towards understanding malware behaviour by the extraction of api calls. In Cybercrime and Trustworthy Computing Workshop (CTC), 2010 Second, pp. 52–59. IEEE (2010)

Amer, E., Zelinka, I., El-Sappagh, S.: A multi-perspective malware detection approach through behavioral fusion of api call sequence. Comput. Secur. (2021). https://doi.org/10.1016/j.cose.2021.102449

Ashik, M., Jyothish, A., Anandaram, S., Vinod, P., Mercaldo, F., Martinelli, F., Santone, A.: Detection of malicious software by analyzing distinct artifacts using machine learning and deep learning algorithms. Electronics 10(14), 1694 (2021)

avtest: Malware statistics and trends report | av-test. https://www.av-test.org/en/statistics/malware/. Date: 01/18/2021

Chen, Z.G., Kang, H.S., Yin, S.N., Kim, S.R.: Automatic ransomware detection and analysis based on dynamic api calls flow graph. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, pp. 196–201. ACM (2017)

D’Angelo, G., Ficco, M., Palmieri, F.: Association rule-based malware classification using common subsequences of api calls. Appl. Soft Comput. 105, 107234 (2021)

Ding, Y., Xia, X., Chen, S., Li, Y.: A malware detection method based on family behavior graph. Comput. Secur. 73, 73–86 (2018)

Elhadi, A..A..E., Maarof, M..A., Barry, B.I., Hamza, H.: Enhancing the detection of metamorphic malware using call graphs. Comput. Secur. 46, 62–78 (2014)

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes. In Proceedings 1996 IEEE Symposium on Security and Privacy, pp. 120–128. IEEE (1996)

Galal, H.S., Mahdy, Y.B., Atiea, M.A.: Behavior-based features model for malware detection. J. Comput. Virol. Hack. Tech. 12(2), 59–67 (2016)

Gao, Y., Lu, Z., Luo, Y.: Survey on malware anti-analysis. In Fifth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 270–275. IEEE (2014)

Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., Mao, L.: Maldae: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Comput. Secur. 83, 208 (2019)

Karbalaie, F., Sami, A., Ahmadi, M.: Semantic malware detection by deploying graph mining. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 373–379 (2012)

Ki, Y., Kim, E., Kim, H.K.: A novel approach to detect malware based on api call sequence analysis. Int. J. Distrib. Sens. Netw. 11(6), 1–9 (2015)

Kumar, A.V., Vishnani, K., Kumar, K.V.: Split personality malware detection and defeating in popular virtual machines. In Proceedings of the Fifth International Conference on Security of Information and Networks, pp. 20–26. ACM (2012)

Liu, S., Feng, P., Wang, S., Sun, K., Cao, J.: Enhancing malware analysis sandboxes with emulated user behavior. Comput. Secur. p. 102613 (2022)

Luh, R., Schramm, G., Wagner, M., Janicke, H., Schrittwieser, S.: Sequin: a grammar inference framework for analyzing malicious system behavior. J. Comput. Virol. Hack. Tech. pp. 1–21 (2018)

Lundsgård, G., Nedström, V.: Bypassing modern sandbox technologies (2016). Student Paper

Mahindru, A., Sangal, A.: Semidroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. Int. J. Mach. Learn. Cybern. 12(5), 1369–1411 (2021)

MalwareBazaar: Malwarebazaar. https://bazaar.abuse.ch. Date: 2/22/2022

Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A layered architecture for detecting malicious behaviors. In International Workshop on Recent Advances in Intrusion Detection, pp. 78–97. Springer (2008)

Miao, Q., Liu, J., Cao, Y., Song, J.: Malware detection using bilayer behavior abstraction and improved one-class support vector machines. Int. J. Inf. Secur. 15(4), 361–379 (2016)

Ming, J., Xin, Z., Lan, P., Wu, D., Liu, P., Mao, B.: Impeding behavior-based malware analysis via replacement attacks to malware specifications. J. Comput. Virol. Hack. Tech. 13(3), 193–207 (2017)

Mpanti, A., Nikolopoulos, S.D., Polenakis, I.: A graph-based model for malicious software detection exploiting domination relations between system-call groups. In 9th International Conference on Computer Systems and Technologies, pp. 20–26. ACM (2018)

Naderi, H., Vinod, P., Conti, M., Parsa, S., Alaeiyan, M.H.: Malware signature generation using locality sensitive hashing. In International Conference on Security and Privacy, pp. 115–124. Springer (2019)

Péchoux, R., Ta, T.D.: A categorical treatment of malicious behavioral obfuscation. In International Conference on Theory and Applications of Models of Computation, pp. 280–299. Springer (2014)

portableapps: portableapps. www.portableapps.com. Date: 2/22/2022

portablefreeware: portablefreeware. www.portablefreeware.com. Date: 2/22/2022

Ranu, S., Singh, A.K.: Graphsig: A scalable approach to mining significant subgraphs in large graph databases. In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on, pp. 844–855. IEEE (2009)

Singh, J., Singh, J.: A survey on machine learning-based malware detection in executable files. J. Syst. Arch. 112, 101861 (2021). https://doi.org/10.1016/j.sysarc.2020.101861

Souri, A., Hosseini, R.: A state-of-the-art survey of malware detection approaches using data mining techniques. HCIS 8(1), 3 (2018)

Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for malware analysis. Comput. Secur. 81, 123-147 (2019)

Usman, N., Usman, S., Khan, F., Jan, M.A., Sajid, A., Alazab, M., Watters, P.: Intelligent dynamic malware detection using machine learning in ip reputation for forensics data analytics. Futur. Gener. Comput. Syst. 118, 124–141 (2021)

virusshare: virusshare. www.virusshare.com. Date: 9/1/2021

Wüchner, T., Cisłak, A., Ochoa, M., Pretschner, A.: Leveraging compression-based graph mining for behavior-based malware detection. IEEE Trans. Depend. Secure Comput. 16(1), 99–112 (2017)