A hexagonal close-packed high-entropy alloy: The effect of entropy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257
Zhang, 2013, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Sci. Rep., 3, 1455, 10.1038/srep01455
Zhou, 2007, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90, 181904, 10.1063/1.2734517
Ma, 2012, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532, 480, 10.1016/j.msea.2011.10.110
Dong, 2014, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57, 67, 10.1016/j.matdes.2013.12.048
Liu, 2015, Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys, J. Alloys Compd., 619, 610, 10.1016/j.jallcom.2014.09.073
Chen, 2013, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51, 854, 10.1016/j.matdes.2013.04.061
Zhu, 2010, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527, 6975, 10.1016/j.msea.2010.07.028
Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Chuang, 2011, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59, 6308, 10.1016/j.actamat.2011.06.041
Hsu, 2010, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268, 653, 10.1016/j.wear.2009.10.013
Lee, 2008, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid, Thin Solid Films, 517, 1301, 10.1016/j.tsf.2008.06.014
Hemphill, 2012, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60, 5723, 10.1016/j.actamat.2012.06.046
Senkov, 2012, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47, 4062, 10.1007/s10853-012-6260-2
2016
Gao, 2015, High-entropy alloys in hexagonal close-packed structure, Metall. Mater. Trans. A.
Chen, 2010, Amorphization of equimolar alloys with HCP elements during mechanical alloying, J. Alloys Compd., 506, 210, 10.1016/j.jallcom.2010.06.179
Gao, 2013, Searching for next single-phase high-entropy alloy compositions, Entropy, 15, 4504, 10.3390/e15104504
Feuerbacher, 2015, Hexagonal high-entropy alloys, Mater. Res. Lett., 3, 1, 10.1080/21663831.2014.951493
Takeuchi, 2014, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66, 1984, 10.1007/s11837-014-1085-x
Okamoto, 2000
Zhang, 2000, Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition, Mater. Trans. JIM, 41, 1410, 10.2320/matertrans1989.41.1410
Fakirov, 2007, On the application of the “rule of mixture” to microhardness of complex polymer systems containing a soft component and/or phase, J. Mater. Sci., 42, 1131, 10.1007/s10853-006-1468-7
http://www.webelements.com/.
Shun, 2012, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Mater. Charact., 70, 63, 10.1016/j.matchar.2012.05.005
Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014
Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171
Zhang, 2015, Senary refractory high-entropy alloy MoNbTaTiVW, Mater. Sci. Technol., 31, 1207, 10.1179/1743284715Y.0000000031
Gao, 2015, Senary refractory high-entropy alloy HfNbTaTiVZr, Metall. Mater. Trans. A.
Zhang, 2015, Senary refractory high-entropy alloy CrxMoNbTaVW, Calphad, 51, 193, 10.1016/j.calphad.2015.09.007
Fang, 2003, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, J. Non-Cryst. Solids, 321, 120, 10.1016/S0022-3093(03)00155-8
Takeuchi, 2001, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, 304, 446, 10.1016/S0921-5093(00)01446-5
Takeuchi, 2005, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46, 2817, 10.2320/matertrans.46.2817
Yang, 2012, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132, 233, 10.1016/j.matchemphys.2011.11.021
Zhang, 2008, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, 534, 10.1002/adem.200700240
Gao, 2015, Applications of special quasi-random structures to high-entropy alloys
Hume-Rothery, 1969
Guo, 2011, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505, 10.1063/1.3587228