A heat flux sensor leveraging the transverse Seebeck effect in elemental antimony
Tài liệu tham khảo
Childs, 1999, Heat flux measurement techniques, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 213, 655, 10.1177/095440629921300702
Miller, 2023, Temperature dependent performance of Schmidt–Boelter heat flux sensors, Rev. Sci. Instrum., 94, 10.1063/5.0129703
Goldsmid, 2011, Application of the transverse thermoelectric effects, J. Electron. Mater., 40, 1254, 10.1007/s11664-010-1357-3
Tang, 2015, p × n-type transverse thermoelectrics: a novel type of thermal management material, J. Electron. Mater., 44, 2095, 10.1007/s11664-015-3666-z
Renk, 1994, Thermopile effect due to laser radiation heating in thin films of high-Tc materials, Phys. C: Superconductivity, 235–240, 37, 10.1016/0921-4534(94)91308-0
Roediger, 2008, Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks, J. Turbomach., 130, 10.1115/1.2751141
Kanno, 2014, Detection of thermal radiation, sensing of heat flux, and recovery of waste heat by the transverse thermoelectric effect, J. Electron. Mater., 43, 2072, 10.1007/s11664-013-2959-3
Sapozhnikov, 2004, Bismuth-based gradient heat-flux sensors in thermal experiment, High. Temp., 42, 629, 10.1023/B:HITE.0000039993.76288.01
Scudder, 2021, Highly efficient transverse thermoelectric devices with Re4Si7 crystals, Energy Environ. Sci., 14, 4009, 10.1039/D1EE00923K
Scudder, 2022, Adiabatic and isothermal configurations for Re4Si7 transverse thermoelectric power generators, Appl. Phys. Rev., 9, 10.1063/5.0073354
Zahner, 1998, Transverse thermoelectric response of a tilted metallic multilayer structure, Appl. Phys. Lett., 73, 1364, 10.1063/1.122376
Mityakov, 2012, Gradient heat flux sensors for high temperature environments, Sens. Actuators A Phys., 176, 1, 10.1016/j.sna.2011.12.020
Kyarad, 2004, Al–Si multilayers: a synthetic material with large thermoelectric anisotropy, Appl. Phys. Lett., 85, 5613, 10.1063/1.1830680
Meier, 2016, Design and convective calibration of a transverse heat flux sensor, Exp. Heat. Transf., 29, 139, 10.1080/08916152.2014.945050
Kanno, 2009, Enhancement of transverse thermoelectric power factor in tilted Bi/Cu multilayer, Appl. Phys. Lett., 94, 10.1063/1.3081411
Zhu, 2022, High-throughput optimization and fabrication of Bi2Te2.7Se0.3-based artificially tilted multilayer thermoelectric devices, J. Eur. Ceram. Soc., 42, 3913, 10.1016/j.jeurceramsoc.2022.03.034
Zhu, 2021, Fabrication and performance prediction of Ni/Bi0.5Sb1.5Te3 artificially-tilted multilayer devices with transverse thermoelectric effect, J. Power Sources, 512, 10.1016/j.jpowsour.2021.230471
Uchida, 2022, Thermoelectrics: from longitudinal to transverse, Joule, 6, 2240, 10.1016/j.joule.2022.08.016
Xiang, 2019, Large transverse thermoelectric figure of merit in a topological Dirac semimetal, Sci. China Phys. Mech. Astron., 63
Zhou, 2020, Heat flux sensing by anomalous Nernst effect in Fe–Al thin films on a flexible substrate, Appl. Phys. Express, 13, 10.35848/1882-0786/ab79fe
Uchida, 2012, Enhancement of spin-Seebeck voltage by spin-hall thermopile, Appl. Phys. Express, 5, 10.1143/APEX.5.093001
Sakai, 2014, Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer, Sci. Rep., 4, 6089, 10.1038/srep06089
Yue, 2022, High transverse thermoelectric performance and interfacial stability of Co/Bi0.5Sb1.5Te3 artificially tilted multilayer thermoelectric devices, ACS Appl. Mater. Interfaces, 14, 39053, 10.1021/acsami.2c10227
Liu, 2022, A transient heat flux sensor based on the transverse Seebeck effect of single crystal Bi2Te3, Measurement, 198, 10.1016/j.measurement.2022.111419
Takahashi, 2009, Tailoring of inclined crystal orientation in layered cobaltite thin films for the development of off-diagonal thermoelectric effect, Appl. Phys. Lett., 95, 10.1063/1.3194796
Zhang, 2008, Atomic layer thermopile materials: physics and application, J. Nanomater., 2008, 10.1155/2008/329601
Yang, 2014, Laser induced thermoelectric voltage effect of Bi2.1Sr1.9CaCu2O8 thin films
S. Heinze, Thermoelectric properties of oxide heterostructures, Doctoral Thesis, University of Stuttgart (2013), doi:10.18419/opus-6836.
Chen, 2022, High-frequency response heat flux sensor based on the transverse thermoelectric effect of inclined La1−xCaxMnO3 films, Appl. Phys. Lett., 121, 10.1063/5.0124140
Song, 2020, Highly sensitive heat flux sensor based on the transverse thermoelectric effect of YBa2Cu3O7−δ thin film, Appl. Phys. Lett., 117, 10.1063/5.0021451
Chen, 2023, The atomic layer thermopile heat flux sensor based on the inclined epitaxial YBa2Cu3O7−δ films, Mater. Lett., 330, 10.1016/j.matlet.2022.133336
Yim, 1972, Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling, Solid-State Electron., 15, 1141, 10.1016/0038-1101(72)90173-6
Ho, 1972, Thermal conductivity of the elements, J. Phys. Chem. Ref. Data, 1, 279, 10.1063/1.3253100
Pitts, 2006, Round robin study of total heat flux gauge calibration at fire laboratories, Fire Safety J, 41, 459, 10.1016/j.firesaf.2006.04.004
Murthy, 2000, Radiative calibration of heat-flux sensors at NIST: Facilities and techniques, J. Res. Natl. Inst. Stand. Technol., 105, 293, 10.6028/jres.105.033
Cholewa, 2016, A technique for coupled thermomechanical response measurement using infrared thermography and digital image correlation (TDIC), Exp. Mech., 56, 145, 10.1007/s11340-015-0086-1
H. Kim. Procedures to obtain accurate measurement from a gas fueled burner, Masters Thesis, University of Maryland (2014), https://doi.org/10.13016/M2F02F. http://hdl.handle.net/1903/16227.
Saunders, 1965, The Seebeck coefficients of antimony and arsenic single crystals, J. Phys. Chem. Solids, 26, 1299, 10.1016/0022-3697(65)90112-5
Pountney, 2021, Calibration of thermopile heat flux gauges using a physically-based equation, Proc. Inst. Mech. Eng., Part A: J. Power Energy, 235, 1806, 10.1177/0957650920982103
Pullins, 2010, In situ high temperature heat flux sensor calibration, Int. J. Heat. Mass Transf., 53, 3429, 10.1016/j.ijheatmasstransfer.2010.03.042
Trelewicz, 2015, High-temperature calibration of direct write heat flux sensors from 25 °C to 860 °C using the in-cavity radiation method, IEEE Sens. J., 15, 358, 10.1109/JSEN.2014.2343931
Saunders, 1968, The Seebeck coefficient and the Fermi surface of antimony single crystals, J. Phys. Chem. Solids, 29, 327, 10.1016/0022-3697(68)90077-2
Hager, 1965, Thin foil heat meter, Rev. Sci. Instrum., 36, 1564, 10.1063/1.1719394