A heat flux sensor leveraging the transverse Seebeck effect in elemental antimony

Sensors and Actuators A: Physical - Tập 363 - Trang 114729 - 2023
Kenneth McAfee1, Peter B. Sunderland2, Oded Rabin3,4
1Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
2Department of Fire Protection Engineering University of Maryland College Park, MD 20742, USA
3Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742 USA
4Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA

Tài liệu tham khảo

Childs, 1999, Heat flux measurement techniques, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 213, 655, 10.1177/095440629921300702 Miller, 2023, Temperature dependent performance of Schmidt–Boelter heat flux sensors, Rev. Sci. Instrum., 94, 10.1063/5.0129703 Goldsmid, 2011, Application of the transverse thermoelectric effects, J. Electron. Mater., 40, 1254, 10.1007/s11664-010-1357-3 Tang, 2015, p × n-type transverse thermoelectrics: a novel type of thermal management material, J. Electron. Mater., 44, 2095, 10.1007/s11664-015-3666-z Renk, 1994, Thermopile effect due to laser radiation heating in thin films of high-Tc materials, Phys. C: Superconductivity, 235–240, 37, 10.1016/0921-4534(94)91308-0 Roediger, 2008, Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks, J. Turbomach., 130, 10.1115/1.2751141 Kanno, 2014, Detection of thermal radiation, sensing of heat flux, and recovery of waste heat by the transverse thermoelectric effect, J. Electron. Mater., 43, 2072, 10.1007/s11664-013-2959-3 Sapozhnikov, 2004, Bismuth-based gradient heat-flux sensors in thermal experiment, High. Temp., 42, 629, 10.1023/B:HITE.0000039993.76288.01 Scudder, 2021, Highly efficient transverse thermoelectric devices with Re4Si7 crystals, Energy Environ. Sci., 14, 4009, 10.1039/D1EE00923K Scudder, 2022, Adiabatic and isothermal configurations for Re4Si7 transverse thermoelectric power generators, Appl. Phys. Rev., 9, 10.1063/5.0073354 Zahner, 1998, Transverse thermoelectric response of a tilted metallic multilayer structure, Appl. Phys. Lett., 73, 1364, 10.1063/1.122376 Mityakov, 2012, Gradient heat flux sensors for high temperature environments, Sens. Actuators A Phys., 176, 1, 10.1016/j.sna.2011.12.020 Kyarad, 2004, Al–Si multilayers: a synthetic material with large thermoelectric anisotropy, Appl. Phys. Lett., 85, 5613, 10.1063/1.1830680 Meier, 2016, Design and convective calibration of a transverse heat flux sensor, Exp. Heat. Transf., 29, 139, 10.1080/08916152.2014.945050 Kanno, 2009, Enhancement of transverse thermoelectric power factor in tilted Bi/Cu multilayer, Appl. Phys. Lett., 94, 10.1063/1.3081411 Zhu, 2022, High-throughput optimization and fabrication of Bi2Te2.7Se0.3-based artificially tilted multilayer thermoelectric devices, J. Eur. Ceram. Soc., 42, 3913, 10.1016/j.jeurceramsoc.2022.03.034 Zhu, 2021, Fabrication and performance prediction of Ni/Bi0.5Sb1.5Te3 artificially-tilted multilayer devices with transverse thermoelectric effect, J. Power Sources, 512, 10.1016/j.jpowsour.2021.230471 Uchida, 2022, Thermoelectrics: from longitudinal to transverse, Joule, 6, 2240, 10.1016/j.joule.2022.08.016 Xiang, 2019, Large transverse thermoelectric figure of merit in a topological Dirac semimetal, Sci. China Phys. Mech. Astron., 63 Zhou, 2020, Heat flux sensing by anomalous Nernst effect in Fe–Al thin films on a flexible substrate, Appl. Phys. Express, 13, 10.35848/1882-0786/ab79fe Uchida, 2012, Enhancement of spin-Seebeck voltage by spin-hall thermopile, Appl. Phys. Express, 5, 10.1143/APEX.5.093001 Sakai, 2014, Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer, Sci. Rep., 4, 6089, 10.1038/srep06089 Yue, 2022, High transverse thermoelectric performance and interfacial stability of Co/Bi0.5Sb1.5Te3 artificially tilted multilayer thermoelectric devices, ACS Appl. Mater. Interfaces, 14, 39053, 10.1021/acsami.2c10227 Liu, 2022, A transient heat flux sensor based on the transverse Seebeck effect of single crystal Bi2Te3, Measurement, 198, 10.1016/j.measurement.2022.111419 Takahashi, 2009, Tailoring of inclined crystal orientation in layered cobaltite thin films for the development of off-diagonal thermoelectric effect, Appl. Phys. Lett., 95, 10.1063/1.3194796 Zhang, 2008, Atomic layer thermopile materials: physics and application, J. Nanomater., 2008, 10.1155/2008/329601 Yang, 2014, Laser induced thermoelectric voltage effect of Bi2.1Sr1.9CaCu2O8 thin films S. Heinze, Thermoelectric properties of oxide heterostructures, Doctoral Thesis, University of Stuttgart (2013), doi:10.18419/opus-6836. Chen, 2022, High-frequency response heat flux sensor based on the transverse thermoelectric effect of inclined La1−xCaxMnO3 films, Appl. Phys. Lett., 121, 10.1063/5.0124140 Song, 2020, Highly sensitive heat flux sensor based on the transverse thermoelectric effect of YBa2Cu3O7−δ thin film, Appl. Phys. Lett., 117, 10.1063/5.0021451 Chen, 2023, The atomic layer thermopile heat flux sensor based on the inclined epitaxial YBa2Cu3O7−δ films, Mater. Lett., 330, 10.1016/j.matlet.2022.133336 Yim, 1972, Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling, Solid-State Electron., 15, 1141, 10.1016/0038-1101(72)90173-6 Ho, 1972, Thermal conductivity of the elements, J. Phys. Chem. Ref. Data, 1, 279, 10.1063/1.3253100 Pitts, 2006, Round robin study of total heat flux gauge calibration at fire laboratories, Fire Safety J, 41, 459, 10.1016/j.firesaf.2006.04.004 Murthy, 2000, Radiative calibration of heat-flux sensors at NIST: Facilities and techniques, J. Res. Natl. Inst. Stand. Technol., 105, 293, 10.6028/jres.105.033 Cholewa, 2016, A technique for coupled thermomechanical response measurement using infrared thermography and digital image correlation (TDIC), Exp. Mech., 56, 145, 10.1007/s11340-015-0086-1 H. Kim. Procedures to obtain accurate measurement from a gas fueled burner, Masters Thesis, University of Maryland (2014), https://doi.org/10.13016/M2F02F. http://hdl.handle.net/1903/16227. Saunders, 1965, The Seebeck coefficients of antimony and arsenic single crystals, J. Phys. Chem. Solids, 26, 1299, 10.1016/0022-3697(65)90112-5 Pountney, 2021, Calibration of thermopile heat flux gauges using a physically-based equation, Proc. Inst. Mech. Eng., Part A: J. Power Energy, 235, 1806, 10.1177/0957650920982103 Pullins, 2010, In situ high temperature heat flux sensor calibration, Int. J. Heat. Mass Transf., 53, 3429, 10.1016/j.ijheatmasstransfer.2010.03.042 Trelewicz, 2015, High-temperature calibration of direct write heat flux sensors from 25 °C to 860 °C using the in-cavity radiation method, IEEE Sens. J., 15, 358, 10.1109/JSEN.2014.2343931 Saunders, 1968, The Seebeck coefficient and the Fermi surface of antimony single crystals, J. Phys. Chem. Solids, 29, 327, 10.1016/0022-3697(68)90077-2 Hager, 1965, Thin foil heat meter, Rev. Sci. Instrum., 36, 1564, 10.1063/1.1719394