A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Casabianca, L.B. & de Dios, A.C. Ab initio calculations of NMR chemical shifts. J. Chem. Phys. 128, 052201-1–052201-10 (2008).
Bally, T. & Rablen, P.R. Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules. J. Org. Chem. 76, 4818–4830 (2011).
Cramer, C.J. Chapter 8 (density functional theory) in Essentials of Computational Chemistry 2nd edn. (John Wiley & Sons, 2004).
Jain, R., Bally, T. & Rablen, P.R. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J. Org. Chem. 74, 4017–4023 (2009).
Lodewyk, M.W., Siebert, M.R. & Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2011).
Tantillo, D.J. Walking in the woods with quantum chemistry–applications of quantum chemical calculations in natural products research. Nat. Prod. Rep. 30, 1079–1086 (2013).
Nicolaou, K.C. & Snyder, S.A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. 44, 1012–1044 (2005).
Pretsch, E., Bühlmann, P. & Affolter, C. Structure Determination of Organic Compounds: Tables of Spectral Data 3rd edn. (Springer, 2000).
Abraham, R. & Mobli, M. Modelling 1H NMR Spectra of Organic Compounds: Theory, Applications and NMR Prediction Software 1st edn. (John Wiley & Sons, 2008).
Wiitala, K.W., Al-Rashid, Z.F., Dvornikovs, V., Hoye, T.R. & Cramer, C.T. Evaluation of various DFT protocols for computing 1H and 13C chemical shifts to distinguish stereoisomers: diastereomeric 2-, 3-, and 4-methylcyclohexanols as a test set. J. Phys. Org. Chem. 20, 345–354 (2007).
Wiitala, K.W., Hoye, T.R. & Cramer, C.J. Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. J. Chem. Theory Comput. 2, 1085–1092 (2006).
MacroModel, version 10.0. http://www.schrodinger.com/citations/41/11/1/ (Schrödinger, New York, 2013).
Chang, G., Guida, W.C. & Still, W.C. An internal coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).
Smith, S.G. & Goodman, J.M. Assigning stereochemistry to single diastereomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc. 132, 12946–12959 (2010).
Zhao, Y. & Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and twelve other functionals. Theor. Chem. Acc. 120, 215–241 (2008).
Zhao, Y. & Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).
London, F. Théorie quantique des courants interatomiques dans les cominaisons aromatiques. J. Phys. Radium 8, 397–409 (1937).
Cramer, C.J. Chapter 9 (charge distribution and spectroscopic properties) in Essentials of Computational Chemistry 2nd edn. (John Wiley & Sons, 2004).
Rablen, P.R., Pearlman, S.A. & Finkbiner, J. A comparison of density functional methods for the estimation of proton chemical shifts with chemical accuracy. J. Phys. Chem. A 103, 7357–7363 (1999).
Tomasi, J., Mennucci, B. & Cances, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. (Theochem) 464, 211–226 (1999).
Barone, V., Cossi, M. & Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 107, 3210–3221 (1997).
Smith, S.G. & Goodman, J.M. Assigning the stereochemistry of pairs of diastereomers using GIAO NMR shift calculation. J. Org. Chem. 74, 4597–4607 (2009).
Sarotti, A.M. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments. Org. Biomol. Chem. 11, 4847–4859 (2013).
Wiitala, K.W., Cramer, C.J. & Hoye, T.R. Comparison of various density functional methods for distinguishing stereoisomers based on computed 1H or 13C NMR chemical shifts using diastereomeric penam ß-lactams as a test set. Magn. Reson. Chem. 45, 819–829 (2007).
Brown, S.G., Jansma, M.J. & Hoye, T.R. Case study of empirical and computational chemical shift analyses: reassignment of the relative configuration of phomopsichalasin to that of diaporthichalasin. J. Nat. Prod. 75, 1326–1331 (2012).
Saielli, G., Nicolaou, K.C., Ortiz, A., Zhang, H. & Bagno, A. Addressing the stereochemistry of complex organic molecules by density functional theory-NMR: vannusal B in retrospective. J. Am. Chem. Soc. 133, 6072–6077 (2011).
Rychnovsky, S.D. Predicting NMR spectra by computational methods: structure revision of hexacyclinol. Org. Lett. 8, 2895–2898 (2006).
Lodewyk, M.W. & Tantillo, D.J. Prediction of the structure of nobilisitine a using computed NMR chemical shifts. J. Nat. Prod. 74, 1339–1343 (2011).
Maestro, version 9.4 http://www.schrodinger.com/citations/41/12/1/. (Schrödinger, New York, 2013).
Macrae, C.F. et al. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).
Frisch, M.J. et al. Gaussian 09, Revision A. http://www.gaussian.com/g_tech/g_ur/m_citation.htm (Gaussian, 2009).
Dennington, R., Keith, T. & Millam, J. GaussView, Version 5. http://www.gaussian.com/g_tech/gv5ref/gv5citation.htm. (Semichem, 2009).
Marell, D.J., Emond, S.J., Kulshrestha, A. & Hoye, T.R. Analysis of seven-membered lactones by computational NMR methods: proton NMR chemical shift data are more discriminating than carbon. J. Org. Chem. 79, 753–758 (2014).
Solomons, T.W.G. & Fryhle, C.B. Organic Chemistry 9th edn. (John Wiley & Sons, 2007).
Schlegel, B., Härtl, A., Dahse, H.-M., Gollmick, F.A. & Gräfe, U. Hexacyclinol, a new antiproliferative metabolite of Panus rudis HKI 0254. J. Antibiotics 55, 814–817 (2002).
La Clair, J.J. Total syntheses of hexacyclinol, 5-epi-hexacyclinol, and desoxohexacyclinol unveil an antimalarial prodrug motif. Angew. Chem. Int. Ed. 45, 2769–2773 (2006).
Porco, J.A. Jr., Su, S., Lei, X., Bardhan, S. & Rychnovsky, S.D. Total synthesis and structure assignment of (+)-hexacyclinol. Angew. Chem. Int. Ed. 45, 5790–5792 (2006).
Saielli, G. & Bagno, A. Can two molecules have the same NMR spectrum? Hexacyclinol revisited. Org. Lett. 11, 1409–1412 (2009).
Guella, G., Dini, F. & Pietra, F. Metabolites with a novel C30 backbone from marine ciliates. Angew. Chem. Int. Ed. 38, 1134–1136 (1999).
Guella, G. et al. Hemivannusal and prevannusadials–new sesquiterpenoids from the marine ciliate protist Euplotes vannus: the putative biogenetic precursors to dimeric terpenoid vannusals. Eur. J. Org. Chem. 2007, 5226–5234 (2007).
Nicolaou, K.C., Ortiz, A., Zhang, H. & Guella, G. Total synthesis and structural revision of vannusals A and B: synthesis of the true structures of vannusals A and B. J. Am. Chem. Soc. 132, 7153–7176 (2010).
Nicolaou, K.C., Ortiz, A., Zhang, H. & Guella, G. Total synthesis and structural revision of vannusals A and B: synthesis of the true structures of vannusals A and B. J. Am. Chem. Soc. 132, 7153–7176 (2010).
Nicolaou, K.C., Ortiz, A., Zhang, H. & Guella, G. Total synthesis and structural revision of vannusals A and B: synthesis of the true structures of vannusals A and B. J. Am. Chem. Soc. 132, 7153–7176 (2010).