A gradient method for viscoelastic behaviour identification of damped sandwich structures

Comptes Rendus - Mecanique - Tập 340 Số 8 - Trang 619-623
Imen Elkhaldi1, Isabelle Charpentier1, El Mostafa Daya1,2
1Laboratoire dʼétude des microstructures et mécanique des matériaux, UMR CNRS 7239, île du Saulcy, 57045 Metz cedex 01, France
2Unité Mixte Internationale, UMI GT CNRS 2958, Georgia Tech Lorraine, 2 rue Marconi, Metz 57070, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

[1] J. Landier, Modélisation et étude experimentale des propriétés amortissantes des tôles sandwich, Ph.D. Thesis, University of Metz, 1993.

[2] Daya, E.; Potier-Ferry, M. A numerical method for non-linear eigenvalue problems application to vibrations of viscoelastic structures, Computers & Structures, Volume 79 (2001) no. 5, pp. 533-541

[3] L. Hascoët, V. Pascual, Tapenade 2.1 userʼs guide, Technical Report 0300, INRIA, 2004, http://www.inria.fr/rrrt/rt-0300.html.

[4] Charpentier, I.; Potier-Ferry, M. Différentiation automatique de la méthode asymptotique numérique typée: lʼapproche Diamant, Comptes Rendus Mecanique, Volume 336 (2008), pp. 336-340

[5] Bilasse, M.; Charpentier, I.; Daya, E.; Koutsawa, Y. A generic approach for the solution of nonlinear residual equations. Part ii: Homotopy and complex nonlinear eigenvalue method, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009), pp. 3999-4004

[6] Daya, E.; Potier-Ferry, M. A shell finite element for viscoelastically damped sandwich structures, Revue Européenne des Eléments Finis, Volume 11 (2002), pp. 39-56

[7] Williams, M.; Landel, R.; Ferry, J. The temperature dependance of relaxation mechanisms in amorphous polymers and other glass forming liquids, Journal of the American Chemical Society, Volume 77 (1955), pp. 3701-3707

[8] Araújo, A.; Soares, C.M.; Soares, C.M.; Herskovits, J. Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates, Composite Structures, Volume 92 (2010), pp. 2321-2327

[9] Barkanov, E.; Skukis, E.; Petitjean, B. Characterization of viscoelastic layers in sandwich panels via an inverse method, Journal of Sound and Vibration, Volume 327 (2009), pp. 402-412

[10] Griewank, A. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics, vol. 19, SIAM, Philadelphia, 2000

[11] van Keulen, F.; Hafka, R.; Kim, N. Review of options for structural design sensitivity analysis. Part 1: Linear systems, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005), pp. 3213-3243

[12] Charpentier, I. Sensitivity of solutions computed through the asymptotic numerical method, Comptes Rendus Mecanique, Volume 336 (2008), pp. 788-793

[13] Charpentier, I. Checkpointing schemes for adjoint codes: Application to the meteorological model Meso-NH, SIAM Journal on Scientific Computing, Volume 22 (2001), pp. 2135-2151

[14] Charpentier, I. On higher-order differentiation in non-linear mechanics, Optimization Methods & Software, Volume 27 (2012), pp. 221-232

[15] Zhu, C.; Byrd, R.; Nocedal, J. L-bfgs-b: Algorithm 778: L-bfgs-b, Fortran routines for large scale bound constrained optimization, ACM Transactions on Mathematical Software, Volume 23 (1997), pp. 550-560

[16] Baz, A.; Ro, J. Optimum design and control of active constrained layer damping, Journal of Mechanical Engineering Design, Volume 117 (1995), pp. 135-144