A gradient method for viscoelastic behaviour identification of damped sandwich structures
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] J. Landier, Modélisation et étude experimentale des propriétés amortissantes des tôles sandwich, Ph.D. Thesis, University of Metz, 1993.
[2] Daya, E.; Potier-Ferry, M. A numerical method for non-linear eigenvalue problems application to vibrations of viscoelastic structures, Computers & Structures, Volume 79 (2001) no. 5, pp. 533-541
[3] L. Hascoët, V. Pascual, Tapenade 2.1 userʼs guide, Technical Report 0300, INRIA, 2004, http://www.inria.fr/rrrt/rt-0300.html.
[4] Charpentier, I.; Potier-Ferry, M. Différentiation automatique de la méthode asymptotique numérique typée: lʼapproche Diamant, Comptes Rendus Mecanique, Volume 336 (2008), pp. 336-340
[5] Bilasse, M.; Charpentier, I.; Daya, E.; Koutsawa, Y. A generic approach for the solution of nonlinear residual equations. Part ii: Homotopy and complex nonlinear eigenvalue method, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009), pp. 3999-4004
[6] Daya, E.; Potier-Ferry, M. A shell finite element for viscoelastically damped sandwich structures, Revue Européenne des Eléments Finis, Volume 11 (2002), pp. 39-56
[7] Williams, M.; Landel, R.; Ferry, J. The temperature dependance of relaxation mechanisms in amorphous polymers and other glass forming liquids, Journal of the American Chemical Society, Volume 77 (1955), pp. 3701-3707
[8] Araújo, A.; Soares, C.M.; Soares, C.M.; Herskovits, J. Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates, Composite Structures, Volume 92 (2010), pp. 2321-2327
[9] Barkanov, E.; Skukis, E.; Petitjean, B. Characterization of viscoelastic layers in sandwich panels via an inverse method, Journal of Sound and Vibration, Volume 327 (2009), pp. 402-412
[10] Griewank, A. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics, vol. 19, SIAM, Philadelphia, 2000
[11] van Keulen, F.; Hafka, R.; Kim, N. Review of options for structural design sensitivity analysis. Part 1: Linear systems, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005), pp. 3213-3243
[12] Charpentier, I. Sensitivity of solutions computed through the asymptotic numerical method, Comptes Rendus Mecanique, Volume 336 (2008), pp. 788-793
[13] Charpentier, I. Checkpointing schemes for adjoint codes: Application to the meteorological model Meso-NH, SIAM Journal on Scientific Computing, Volume 22 (2001), pp. 2135-2151
[14] Charpentier, I. On higher-order differentiation in non-linear mechanics, Optimization Methods & Software, Volume 27 (2012), pp. 221-232
[15] Zhu, C.; Byrd, R.; Nocedal, J. L-bfgs-b: Algorithm 778: L-bfgs-b, Fortran routines for large scale bound constrained optimization, ACM Transactions on Mathematical Software, Volume 23 (1997), pp. 550-560