A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adjiman, C.S., Androulakis, I.P. and Floudas, C.A. (1998) A global optimization method, αBB, for general twice-differentiable NLPs–II. Implementation and computational results. 22, 1139–1179.
Adjiman, 1996, A global optimisation method, αBB, for process design, Comput. chem. Engng Suppl., 20, S419, 10.1016/0098-1354(96)00080-4
Adjiman, 1996, Rigorous convex underestimators for general twice-differentiable problems, J. Glob. Opt., 9, 23, 10.1007/BF00121749
Al-Khayyal, F.A., Jointly constrained bilinear programs and related problems: an overview. Comput. Math. Applic. 19(11), 53–62.
Al-Khayyal, 1983, Jointly constrained biconvex programming, Maths Oper. Res., 8, 273, 10.1287/moor.8.2.273
Bracken, 1968
Dembo, 1976, A set of geometric programming test problems and their solutions, Math. Programming, 10, 193, 10.1007/BF01580667
Floudas, 1997, Deterministic global optimization in design, control, and computational chemistry, 93, 129
Floudas, C.A. and Grossmann, I.E. (1995) Algorithmic approaches to process synthesis: logic and global optimization. In FOCAPD’94 AICHE Symp. Ser. pp. 198–221.
1996
Floudas, 1990, A global optimization algorithm (GOP) for certain classes of nonconvex NLPs, Computers chem. Engng, 14, 1397, 10.1016/0098-1354(90)80020-C
Floudas, 1993, A primal-related dual global optimization approach, J. Opt. Theory Appl., 78, 187, 10.1007/BF00939667
Gerschgorin, 1931, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Ser, Fiz. mat., 6, 749
1996
Hertz, 1992, The extreme eigenvalues and stability of real symmetric interval matrices, IEEE Trans. Automat. Cont., 37, 532, 10.1109/9.126593
Kharitonov, V.L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differential Equations 78, 1483–1485.
Liu, 1993, A remark on the GOP algorithm for global optimization, J. Glob. Opt., 3, 519, 10.1007/BF01096418
Maranas, 1992, A global optimization approach for Lennard-Jones microclusters, J. Chem. Phys., 97, 7667, 10.1063/1.463486
Maranas, 1994, A deterministic global optimization approach for molecular structure determination, J. Chem. Phys., 100, 1247, 10.1063/1.467236
Maranas, 1994, Global minimum potential energy conformations for small molecules, J. Glob. Opt., 4, 135, 10.1007/BF01096720
Maranas, 1995, Finding all solutions of nonlinearly constrained systems of equations, J. Glob. Opt., 7, 143, 10.1007/BF01097059
Maranas, 1997, Global optimization in generalized geometric programming, Comput. Chem. Engng, 21, 351, 10.1016/S0098-1354(96)00282-7
McCormick, 1976, Computability of global solutions to factorable nonconvex programs, Math. Programming, 10, 147, 10.1007/BF01580665
Mori, T. and Kokame, H. (1994) Eigenvalue bounds for a certain class of interval matrices. IEICE Trans. Fundamentals E77-A(10), 1707–1709.
Murtagh, 1983
Neumaier, A. (1990) Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.
Neumaier, 1992, An optimality criterion for global quadratic optimization, J. Glob. Opt., 2, 201, 10.1007/BF00122055
Neumaier, A. (1997) On satisfying second-order optimality conditions using modified Cholesky factorizations. SIAM J. Opt. (submitted).
Ratschek, H. and Rokne, J. (1998) Computer Method for the Range of Functions. Ellis Horwood Series in Mathematics and its Applications. Halsted Press, New York.
Rohn, 1996
Smith, 1996, Global optimization of general process models, 355
Stephens, 1997, Interval and bounding Hessians, 109
Visweswaran, 1990, A global optimization algorithm GOP for certain classes of nonconvex NLPs, Comput. chem. Engng, 14, 1419, 10.1016/0098-1354(90)80021-3
Visweswaran, 1993, New properties and computational improvement of the GOP algorithm for problems with quadratic objective function and constraints, J. Glob. Opt., 3, 439, 10.1007/BF01096414
Visweswaran, V. and Floudas, C.A. (1996a) New formulations and branching strategies for the GOP algorithm. In I. E. Grossmann (Ed.) Global Optimization in Engineering Design, Kluwer Book Series in Nonconvex Optimization and its Applications. Chap. 3.