A global model of natural volatile organic compound emissions

American Geophysical Union (AGU) - Tập 100 Số D5 - Trang 8873-8892 - 1995
Alex Guenther, C. N. Hewitt, David J. Erickson, Ray Fall, Chris Mason, Tom Graedel, P. C. Harley, Lee F. Klinger, Manuel Lerdau, W.A. McKay, Thomas Pierce, Bob Scholes, R. Steinbrecher, Raja Krishna Mohan Rao Tallamraju, John Taylor, P. R. Zimmerman

Tóm tắt

Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5°×0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought‐deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.

Từ khóa


Tài liệu tham khảo

Adryukov V. A.Timofeev Assessment of volatile organic compound emissions from natural sources in Europe4th ECE Task Force on Volatile Organic CompoundsSchwetzingen Germany 1989.

10.1016/0960-1686(91)90249-7

Arey J., 1991, The emission of (Z)‐3‐hexen‐l‐ol, (Z)‐3‐hexenylacetate and other oxygenated hydrocarbons from agricultural plant species, Atmos. Environ., 25, 10.1016/0960-1686(91)90148-Z

10.1016/0960-1686(91)90246-4

10.1029/91JD00447

10.1016/0960-1686(90)90438-S

10.1007/BF00048045

Bergengren J. S.Thompson An equilibrium vegetation ecology model Technical ReportNat. Cent. for Atmos. Res. Boulder Colo. 1994.

10.1007/BF00048328

Box E., 1981, Atmospheric Biogenic Hydrocarbons

Broadgate W. P.Liss S.Penkett Oceanic emissions of non‐methane hydrocarbons (NMHC)CACGP/IGAC SymposiumComm. on Atmos. Chem. and Global Pollut./Int. Global Atmos. Chem.Fuji‐Yoshida JapanSept. 5–9 1994.

10.1111/j.2153-3490.1974.tb01948.x

Burton A., 1991, Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient, For. Sci., 37, 1041

10.1111/j.2153-3490.1982.tb01803.x

10.1016/0031-9422(75)85223-X

Dignon J., 1990, Biogenic emissions of isoprene: A global inventory, EOS, Trans. AGU, 71, 1260

10.1029/JD095iD11p18387

EDC‐NESDIS, 1992, Global Ecosystems Database Version 1.0, Disc A

Eichstaedter G. W.Schuermann R.Steinbrecher H.Ziegler Diurnal cycles of soil and needle monoterpene emission rates and simultaneous gradient measurements of monoterpene concentrations in the stem region and above a Norway spruce canopyEUROTRAC symposium '92The HagueNetherlands 1992.

10.1029/93JC00039

10.1029/93GL00210

10.1086/botanicalgazette.143.3.2474826

10.1016/B978-0-12-639010-0.50014-5

10.1104/pp.100.2.987

10.1029/92GB02125

Frank D., 1970, Methane, ethane, and propane concentrations in the Gulf of Mexico, Am. Assoc. Pet. Geol. Bull., 54, 1933

10.1029/JD092iD03p02999

10.1029/94JD00246

10.1029/92GB02793

10.1104/pp.97.1.170

10.1029/91JD00960

10.1029/93JD00527

10.1016/1352-2310(94)90297-6

10.1104/pp.105.1.279

10.1016/0960-1686(92)90463-U

10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2

10.1016/0960-1686(91)90266-A

10.1029/JC088iC15p10679

Iqbal M., 1983, An Introduction to Solar Radiation

10.1016/0004-6981(85)90131-3

10.1029/93JD01223

Janson R. Monoterpenes from the boreal coniferous forest Ph.D. thesis Univ. of Stockholm Stockholm Sweden 1992.

10.1029/93JD00312

10.1104/pp.101.2.435

10.1029/JD090iD01p02380

10.1016/0004-6981(86)90201-5

10.1016/0004-6981(87)90108-9

10.1016/0960-1686(93)90230-V

Lamontagne R., 1974, C1 — C4 hydrocarbons in the North and South Pacific, Tellus, 26, 71

LeClerc M. R.Shaw Space‐time correlations ofu w T pinside and above a deciduous forest canopy8th Symposium on Turbulence and DiffusionAm. Meteorol. Soc.Boston Mass. 1988.

Leemans R., 1992, Global Ecosystems Database Version 1.0: Disc A

Lerdau M. Ecological controls over hydrocarbon emissions from conifers Ph.D. thesis Stanford Univ. Stanford Calif. 1994.

10.1029/94JD00406

10.1104/pp.96.1.44

10.1007/978-3-642-80913-2

10.1007/978-94-009-4738-2_5

10.1111/j.1365-3040.1993.tb00904.x

Luebkert B. W.Shoepp A model to calculate natural VOC emissions from forests in Europe Inter. Inst. for Appl. Sys. Anal Work. Pap. WP‐89‐082 1989.

10.1016/0960-1686(93)90233-O

10.1016/S0031-9422(00)90700-3

10.1038/363234a0

10.1016/0960-1686(90)90173-K

10.1104/pp.98.3.1175

10.1007/BF00627738

10.1029/91JD02757

10.1016/B978-0-12-332850-2.50009-8

10.2343/geochemj.19.269

Olson J., 1992, Global ecosystems database, Version 1.0: Disc A

10.1029/92GB02361

Plass‐Duelmer C. R.Koppmann M.Ratte J.Rudolph Oceanic emissions of light non‐methane hydrocarbonsCACGP/IGAC SymposiumComm. on Atmos. Chem. and Global Pollut./Int. Global Atmos. Chem.Fuji‐Yoshida JapanSept. 5–9 1994.

10.1029/JD093iD02p01417

10.1073/pnas.53.1.215

Ratte M. O.Bujok A.Spitzy J.Rudolph Laboratory experiments on the origin of C2— C3alkenes in seawaterCACGP/IGAC SymposiumComm. on Atmos. Chem. and Global Pollut./Int. Global Atmos. Chem.Fuji‐Yoshida JapanSept. 5–9 1994.

Robinson E. R.Robbins Sources abundance and fate of gaseous atmospheric pollutantsFinal Rep. PR‐6757Stanford Research Institute Menlo Park Calif. 1968.

10.1016/0034-4257(88)90034-X

10.1007/BF00320984

10.1111/j.1365-3040.1991.tb01509.x

10.1021/es00113a006

Steinbrecher R. Gehalt und Emission von Monoterpenen in oberirdischen Organen von Picea abies Ph.D. thesis Tech. Univ. Munchen Munich Germany 1989.

Steinbrecher R., 1992, Proceedings of EUROTRAC Symposium '92

10.1029/JD095iD10p16799

Taylor J. P.Zimmerman D.Erickson A 3‐D modelling study of the sources and sinks of atmospheric carbon monoxide CRES Work. Pap. 1990/3 Aust. Nat. Univ. Canberra 1990.

10.1029/90JD02016

10.1016/B978-0-12-639010-0.50009-1

10.1016/0045-6535(91)90115-T

10.1126/science.168.3939.1577

10.1016/0960-1686(92)90116-3

10.1126/science.260.5112.1314

10.1111/j.1365-3040.1993.tb00521.x

10.1104/pp.75.4.1009

10.1029/JD093iD04p03751

Zimmerman P. Testing of hydrocarbon emissions from vegetation leaf litter and aquatic surfaces and development of a method for compiling biogenic emission inventoriesRep. EPA‐450‐4‐70‐004U.S. Environ. Prot. Agency Research Triangle Park N.C. 1979.

10.1029/JD093iD02p01407