Một khung địa không gian để ước tính độ sâu xói mòn dưới các tòa nhà do sóng bão ở các khu vực ven biển

Springer Science and Business Media LLC - Tập 87 - Trang 1285-1311 - 2017
Mariamawit Borga1, Burak F. Tanyu1, Celso M. Ferreira1, Juan L. Garzon1, Michael Onufrychuk1
1Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, USA

Tóm tắt

Bão và bão nhiệt đới là một trong những mối nguy hiểm lớn đối với các cộng đồng ven biển. Sự tràn sóng do gió mạnh và áp suất thấp từ các hệ thống này có khả năng gây ra lũ lụt lớn ở các khu vực ven biển. Trong nhiều trường hợp, thiệt hại do sóng tràn có thể vượt quá thiệt hại do gió, dẫn đến sự sụp đổ hoàn toàn của các tòa nhà. Do đó, tại các khu vực ven biển, một trong những nguồn gây thiệt hại cấu trúc lớn có thể là do xói mòn, nơi đất dưới tòa nhà phục vụ như nền móng bị cuốn trôi bởi chuyển động của nước. Các phương pháp hiện tại để dự đoán thiệt hại do lũ lụt bão không phân biệt giữa các cơ chế thiệt hại khác nhau (ví dụ, ngập lụt so với xói mòn). Hiện tại, không có công cụ nào có sẵn mà chủ yếu tập trung vào việc dự đoán thiệt hại liên quan đến xói mòn cho các tòa nhà. Một công cụ như vậy có thể cung cấp những lợi thế đáng kể cho việc lập kế hoạch và/hoặc chuẩn bị các phản ứng khẩn cấp. Do đó, mục tiêu của nghiên cứu này là phát triển một phương pháp để dự đoán độ sâu xói mòn có thể xảy ra do sóng bão nhiệt đới bằng cách sử dụng công cụ ArcGIS tự động, bao gồm các điều kiện bão dự kiến (độ sâu dòng chảy, vận tốc, và thời gian lũ lụt), thông tin cụ thể về tòa nhà tại vị trí và loại đất liên quan cho nền móng. Một nghiên cứu điển hình từ Hạt Monmouth (NJ), nơi ghi nhận thiệt hại do xói mòn từ cơn bão Sandy năm 2012, đã được sử dụng để đánh giá độ chính xác của công cụ dự đoán được phát triển và để liên hệ độ sâu xói mòn với thiệt hại tiềm năng do xói mòn. Kết quả cho thấy công cụ phát triển cung cấp kết quả tương đối nhất quán với các quan sát thực địa.

Từ khóa

#bão #sóng tràn #xói mòn #thiệt hại cấu trúc #ArcGIS #dự đoán thiệt hại

Tài liệu tham khảo

Amirebrahimi S, Rajabifard A, Mendis P, Ngo T (2015) A framework for microscale flood damage assessment and visualization for a building using BIM–GIS integration. Int J Digit Earth 9(4):363–386. doi:10.1080/17538947.2015.1034201 Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Evaluating Scour at Bridges. Hydraulic Engineering Circular No. 18 fifth edition https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif12003.pdf Atkinson J, Roberts H, Hagen SC, Zhou S, Bacopoulos P, Medeiros S, Weishampel J, Cobell Z (2011) Deriving frictional parameters and performing historical validation for an ADCIRC storm surge model of the Florida gulf coast. Fla Watershed J 4:22–27 Avinmelech Y (2001) Water content, organic carbon and dry bulk density in flooded sediments. Agric Eng 25:25–33 Banks JC, Camp JV, Abkowitz MD (2014) Scale and resolution considerations in the application of HAZUS-MH 2.1 to flood risk assessments. Nat Hazards Earth Syst Sci 12:3733–3752. doi:10.1061/(ASCE)NH.1527-6996.0000160 Barkdoll BB (2000) Discussion of: time scale for local scour at bridge piers. J Hydraul Eng 126(10):793–794. doi:10.1061/(ASCE)0733-9429 Blake GR (2008) Particle density. In: Encyclopedia of soil science. Springer, pp 504–505. doi: 10.1007/978-1-4020-3995-9_406 Blake GR, Hartge KH (1986) Particle density. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, vol 9. American Society of Agronomy, Madison, pp 363–375 Blake ES, Berg TB, Cangialosi JP, Beven JL (2013) Tropical Cyclone Report: Hurricane Sandy. Report number AL182012, National Hurricane center http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf Boyd CE (1995) Bottom soils, sediment, and pond aquaculture. Chapman & Hall, New York, p 348 Briaud JL, Ting FKF, Chen HC, Guadavalli R, Perugu S, Wei G (1999) SRICOS: prediction of scour rate in cohesive soils at bridge piers. J Geotech Geoenviron Eng 125(4):237–246. doi:10.1061/(ASCE)1090-0241 Briaud JL, Govindasamy AV, Kim D, Gardoni P, Olivera F, Chen H-C, Mathewson C, Elsbury K (2009) Simplified method for estimating scour at bridges. FHWA/TX-09/0-5505-1 Bunya S et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. Mon Weather Rev 138:345–377 Chen J, Huang Z, Jiang C, Deng B, Long Y (2013) Tsunami-induced scour at coastal roadways: a laboratory study. Nat Hazard. doi:10.1007/s11069-013-0727-6 Coduto DP, Yeung MR, Kitch WA (2011) Geotechnical engineering. Pearson, Hoboken Das BM, Sobohan K (2006) Principles of geotechnical engineering. Cengage Learning, Boston Deng L, Cai CS (2010) Bridge scour: prediction, modeling, monitoring and countermeasures—review. Pract Period Struct Des Constr 15:125–134. doi:10.1061/ASCESC.1943-5576.0000041 Dietrich JC et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: synoptic description and analysis of Hurricanes Katrina and Rita. Mon Weather Rev 138:378–404 Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, Jensen R, Smith JM, Stelling GS, Stone GW (2011) Modeling hurricane waves and storm surge using integrally coupled, scalable computations. Coast Eng 58(1):45–65 Ettema RE (1980) Scour at briddsge piers. University of Auckland, Auckland FEMA (2009) Technical manual HAZUS-MH MR4: flood model. FEMA, Washington, DC FEMA (2013) A year after Hurricane Sandy: New Jersey recovery by the numbers. http://www.fema.gov/news-release/2013/10/25/year-after-hurricane-sandy-new-jersey-recovery-numbers FEMA (2013) Hurricane Sandy in New Jersey and New York. Mitigation Assessment Team Report http://www.fema.gov/medialibrarydata/1386850803857025eb299df32c6782fdcbb6f69b35b13/Combined_Sandy_MAT_Report_508post.pdf FEMA-MOTF (2014) Hurricane Sandy Impact Analysis. https://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0 Ferreira CM, Irish J, Olivera F (2014) Quantifying the potential impact of land cover changes due to sea-level rise on storm surge on lower Texas coast bays. Coast Eng 94:102–111 Froehlich DC (1989) Local scour at bridge abutments. In: Proceedings of national conference on hydraulic engineering, ASCE, New Orleans, LA, pp 13–18 Garratt JR (1977) Review of drag coefficients over oceans and continents. Mon Weather Rev 105:915–929 Ghani AA, Chang CK, Leow CS, Zakaria NA (2012) Sungai Pahang digital flood mapping: 2007 flood. Int J River Basin Manag 10(2):139–148. doi:10.1080/15715124.2012.680022 Govindasamy AV, Briaud JL, Kim D, Olivera F, Gardoni P, Delphia J (2013) Observation method for estimating future scour depth at existing bridges. J Geotechn Geoenviron Eng 139(7):1165–1175. doi:10.1061/(ASCE)GT.1943-5606.0000838 Hallegatte S, Green C, Nicholls RJ, Morlot JC (2013) Future flood losses in major coastal cities. Nat Clim Change. doi:10.1038/NCLIMATE1979 Hatzikyriakou A, Lin N, Gong J, Xian S, Hu X, Kennedy A (2015) Component-based vulnerability analysis for residential structures subjected to storm surge impact from Hurricane Sandy. Nat Hazards Rev. doi:10.1061/(ASCE)NH.1527-6996.0000205 Hillel D (1980) Fundamentals of soil physics. Academic Press Inc, New York Holland GJ (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108:1212–1218 Interagency Performance Evaluation Taskforce (IPET) (2007) Performance evaluation of the New Orleans and South East Louisiana Hurricane protection system. In: U.S. Army Corps of Engineers Final Report. vol. 4 http://biotech.law.lsu.edu/katrina/ipet/FINAL%20Vol%20IV%20The%20Storm%20-%20maintext.pdf Jenks RH, Malecki JM (2004) GIS- a proven tool for public health analysis. J Environ Health 67(3):32–34 Jones JS (1983) Comparison of prediction equations for bridge pier and abutment scour. In: Transportation research record 950, Second bridge engineering conference, vol. 2. Transportation Research board, Washington Jongman B et al (2012) Comparative flood damage model assessment: towards a European approach. Nat Hazards Rev. doi:10.5194/nhess-12-3733-2012 Kerr PC, Martyr RC, Donahue AS, Hope ME, Westerink JJ, Luettich RA Jr, Kennedy AB, Dietrich JC, Dawson C, Westerink HJ (2013) U.S IOOS coastal and ocean modeling testbed: evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J Geophys Res Oceans. doi:10.1002/jgrc.20305 Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR (2016) A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards 83:047–987. doi:10.1007/s11069-016-2357-2 Kohli A, Hager WH (2001) Building scour in floodplains. Water Marit Eng 148(2):61–80 Kreibich H, Seifert I, Merz B, Thieken AH (2010) Development of FLEMOcs—a new model for the estimation of flood losses in the commercial sector. Hydrol Sci 55(8):1302–1314. doi:10.1080/02626667.2010.529815 Landsea C, Franklin J, Beaven J (2015) The Revised Atlantic Hurricane Database (HURDAT2). http://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atlantic.pdf Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res Oceans 99:24777–24797 Liu Y, Ma X, Sun Y (2012) Flood damage to rural buildings result from foundation scour and scour protection strategy. Appl Mech Mater 166–169:2627–2630. doi:10.4028/www.scientific.net/AMM.166-169.2627 Longley PA, Maguire DJ, Goodchild MF, Rhind D (2005) Geographical information systems and science. Wiley, New York Mattocks C, Forbes C (2008) A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119 Mattocks C, Forbes C, Ran L (2006) Design and implementation of a real-time storm surge and flood forecasting capability for the State of North Carolina. UNC–CEP Technical Report 103 Melville BW, Chiew YM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125:59–65. doi:10.1061/(ASCE)0733-9429 Nadal NC, Zapata RE, Pagan I, Lopez R, Agudelo J (2010) Building damage due to riverine and coastal floods. J Water Resour Plan Manag 136(3):327–336. doi:10.1061/(ASCE)WR.19435452 Nadal NC, Melby JA, Gonzalez VM, Cox AT (2015) Northern Atlantic Coast Comprehensive Study (NACCS)—coastal storms hazards from Virginia to Maine. Technical Report. In: U.S. Army Engineer Research and Development Center, Vicksburg Osman KT (2013) Physical properties of forest soils. Properties and management. Springer, Berlin, pp 19–44. doi:10.1007/978-3-319-02541-4_2 Penning-Rowsell E, Johnson C (2005) The benefits of Flood and Coastal Risk Management: A Manual of assessment techniques. Middlesex Univ. Press, London Prettenthaler P, Amrusch P, Habsburg-Lothringen C (2010) Estimation of an absolute flood damage curve based on an Austrian case study under a dam breach scenario. Nat Hazards Earth Syst Sci 10:881–894 Qi H, Qi P, Altinakar MS (2013) GIS-based spatial Monte Carlo analysis for integrated flood management with two dimensional flood simulation. Water Resour Manag 27:3631–3645. doi:10.1007/s11269-013-0370-8 Resio DT, Westerink JJ (2008) Modeling the physics of storm surges. Phys Today 61:33–38 Richardson EV, Davis SR (2001) Evaluating scour at bridges. Federal Highway Agency, National Highway Institute, Hydraulic Engineering Circular 18: NHI 01-001 http://www.stream.fs.fed.us/fishxing/fplibrary/FHWA_2001_Evaluating_Scour_at_Bridges.pdf Robertson IN, Riggs HR, Yim SCS, Young YL (2007) Lessons from Hurricane Katrina storm surge on bridges and buildings. J Waterway Port Coast Ocean Eng. doi:10.1061/(ASCE)0733-950X Sanyal J, Lu XX (2006) GIS-based flood hazard mapping at different administrative scales: a case study in gangetic west Bengal, India. Singap J Trop Geogr 27:207–220. doi:10.1111/j.1467-9493.2006.00254.x Scawthorn C, Blais N, Seligson H, Tate E, Mifflin E, Thomas W, Murphy J, Jones C (2006) HAZUS-MH flood loss estimation methodology. I. Overview and flow hazard characterization. Nat Hazards Rev 7(2):60–71. doi:10.1061/(ASCE)1527-6988(2006)7:2(60) Schaller J, Mattos C (2009) GIS model applications for sustainable development and environmental planning at the regional level: GeoSpatial Visual Analytics. Springer, Amsterdam, pp 45–57 Shen GW, Schneider VR, Karaki S (1969) Local scour around bridge piers. J Hydraul Div 95(HY6):1919–1940 Swanson SE (2001) GIS. J Hosp Librariansh 1(3):83–89. doi:10.1300/J186v01n03_09 Tate E, Munoz C, Suchan J (2014) Uncertainty and sensitivity analysis of the HAZUS-MH flood model. Nat Hazards Earth Syst Sci 12:3733–3752. doi:10.1061/(ASCE)NH.1527-6996.0000167 United Nations (2000) Handbook on geographic information systems and digital mapping. Department of Economic and Social Affairs Statistics Division, Series F No.79 Wagenaar DJ, De Bruijn KM, Bouwer LM, De Moel H (2015) Uncertainty in flood damage estimates and its potential effect on investment decisions. Nat Hazards Earth Syst Sci 3:607–640. doi:10.5194/nhessd-3-607-2015 Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Mon Weather Rev 136:833–864 Wolf J (2009) Coastal flooding: impacts of coupled wave-surge-tide models. Nat Hazards 49:241–260. doi:10.1007/s11069-008-9316-5 Wong D, Camelli F, Sonwalkar M (2007) Integrating computational fluid dynamics (CFD) models with GIS: an evaluation on data conversion formats. Geospatial Information Science (1, 2), pp 75312–75312 Xian S, Lin N, Hatzikyriakou A (2015) Storm surge damage to residential areas: a quantitative analysis for Hurricane Sandy in comparison with FEMA flood map. Hazards, Nat. doi:10.1007/s11069-015-1937-x Youssef AM, Pradhan B, Hassan AM (2010) Flash flood risk estimation along the St. Katherine road, Southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62:611–623 Zeiler M (1999) Modeling our world—the ESRI guide to geodatabase design. ESRI Press, Redlands, CA Zevenbergen LW, Lagasse PF, Edge BL (2004) Tidal hydrology, hydraulics and bridge scour. Federal Highway Agency, National Highway Institute, Hydraulic Engineering Circular No. 25, Arlington, VA Zhong G, Liu S, Han C, Huang W (2014) Urban flood maping for Jiaxing city based on hydrodynamic modeling and GIS analysis. J Coast Res 68:168–175. doi:10.2112/SI68-022.1