A geo-logical solution to the lottery paradox, with applications to conditional logic

Synthese - Tập 186 Số 2 - Trang 531-575 - 2012
Hanti Lin1, Kevin T. Kelly1
1Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams E. W. (1975) The logic of conditionals. D. Reidel, Dordrecht

Alchourròn C. E., Gärdenfors P., Makinson D. (1985) On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50: 510–530

Arló-Costa H., Parikh R. (2005) Conditional probability and defeasible inference. Journal of Philosophical Logic 34: 97–119

Barwise K. (1969) Infinitary logic and admissible sets. Journal of Symbolic Logic 34: 226–252

Douven I. (2002) A new solution to the paradoxes of rational acceptability. British Journal for the Philosophy of Science 53: 391–410

Hajek P. (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht

Harper W. (1975) Rational belief change, popper functions and counterfactuals. Synthese 30(1–2): 221–262

Jeffrey, R. C. (1970). Dracula meets Wolfman: Acceptance vs. partial belief. In M. Swain (Ed.), Induction, acceptance, and rational belief. D. Reidel.

Karp C. (1964) Languages with expressions of infinite length. North Holland, Dordrecht

Kelly K. (2008) Ockham’s razor, truth, and information. In: van Benthem J., Adriaans P. (eds) Handbook of the philosophy of information (pp. 321–360). Elsevier, Dordrecht

Kelly K. (2011) Ockham’s razor, truth, and probability. In: Bandyopadhyay P., Forster M. (eds) Handbook on the philosophy of statistics.. Elsevier, Dordrecht, pp 983–1024

Kraus S., Lehmann D., Magidor M. (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44: 167–207

Kyburg H. (1961) Probability and the logic of rational belief. Wesleyan University Press, Middletown

Lehmann D., Magidor M. (1992) What does a conditional base entails?. Artificial Intelligence 55: 1–60

Leitgeb, H. (2010). Reducing belief simpliciter to degrees of belief. Presentation of his unpublished results at the opening celebration of the Center for Formal Epistemology at Carnegie Mellon University in the Summer of 2010 (unpublished results).

Levi, I. (1967). Gambling with truth: An essay on induction and the aims of science. New York: Harper & Row (2nd ed., Cambridge, MA: The MIT Press, 1973).

Levi I. (1969) Information and inference. Synthese 19: 369–391

Levi I. (1996) For the sake of the argument: Ramsey test conditionals, inductive inference and non-monotonic reasoning. Cambridge University Press, Cambridge

Lin, H. (2011). A new theory of acceptance that solves the lottery paradox and provides a simplified probabilistic semantics for Adams’ logic of conditionals. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA.

Makinson, D., & Gärdenfors, P. (1991). Relations between the logic of theory change and nonmonotonic logic. In A. Fuhrmann & M. Morreau (Eds.), The logic of theory change (pp. 183–205). Springer-Verlag Lecture notes in computer science 465. Berlin: Springer.

Novak V., Perfilieva I., Mockor J. (2000) Mathematical principles of fuzzy logic. Kluwer, Dordrecht

Pearl, J. (1989). Probabilistic semantics for nonmonotonic reasoning: A survey. In Proceedings of the first international conference on principles of knowledge representation and reasoning (KR ’89) (pp. 505–516). (Reprinted in G. Shafer & J. Pearl (Eds.), Readings in uncertain reasoning (pp. 699–710). San Francisco: Morgan Kaufmann).

Pollock J. (1995) Cognitive carpentry. MIT Press, Cambridge, MA

Ramsey, F. P. (1929). General propositions and causality. In H. A. Mellor (Ed.), Philosophical papers. Cambridge: Cambridge University Press; 1990.

Ryan S. (1996) The epistemic virtues of consistency. Synthese 109: 121–141

van Fraassen B. (1995) Fine-grained opinion, probability and the logic of full belief. Journal of Philosophical Logic 24: 349–377

Zadeh L. (1965) Fuzzy sets. Information and Control 8: 338–353