A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akasaka, 1994, Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus, J. Biol. Chem., 269, 20592, 10.1016/S0021-9258(17)32034-3
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Amore, 2006, Cis-regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo, Dev. Biol., 293, 555, 10.1016/j.ydbio.2006.02.024
Amore, 2003, Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks, Dev. Biol., 261, 55, 10.1016/S0012-1606(03)00278-1
Angerer, 1988, Expression of a collagen gene in mesenchyme lineages of the Strongylocentrotus purpuratus embryo, Genes Dev., 2, 239, 10.1101/gad.2.2.239
Angerer, L., Hussain, S., Wei, Z., Livingston, B.T., this issue. Sea urchin metalloproteases in development: a genomic survey of the tolloid-like, MMP and ADAM families. Dev. Biol. (doi:10.1016/j.ydbio.2006.07.046).
Aspberg, 1999, Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican, J. Biol. Chem., 274, 20444, 10.1074/jbc.274.29.20444
Bengtson, 1994, The advent of animal skeletons, 412
Benson, 1987, A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression, Dev. Biol., 120, 499, 10.1016/0012-1606(87)90253-3
Benson, 1990, The synthesis and secretion of collagen by cultured sea urchin micromeres, Exp. Cell Res., 188, 141, 10.1016/0014-4827(90)90289-M
Beverdam, 2001, Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice, Development, 128, 3975, 10.1242/dev.128.20.3975
Blankenship, 1984, Collagen metabolism and spicule formation in sea urchin micromeres, Exp. Cell Res., 152, 98, 10.1016/0014-4827(84)90233-7
Brown, 1995, Spiculogenesis in the sea urchin embryo: studies on the SM30 spicule matrix protein, Dev. Growth Differ., 37, 69, 10.1046/j.1440-169X.1995.00008.x
Carson, 1985, A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin, Cell, 41, 639, 10.1016/S0092-8674(85)80036-2
Chang, 1999, Expression and signal transduction of calcium-sensing receptors in cartilage and bone, Endocrinology, 140, 5883, 10.1210/endo.140.12.7190
Cheers, 2005, P16 is an essential regulator of skeletogenesis in the sea urchin embryo, Dev. Biol., 283, 384, 10.1016/j.ydbio.2005.02.037
Chow, 1979, Carbonic anhydrase activity in developing sea urchin embryos, Exp. Cell Res., 124, 451, 10.1016/0014-4827(79)90223-4
Clements, 2004, The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers, Crit. Rev. Clin. Lab. Sci., 41, 265, 10.1080/10408360490471931
Coffman, 2004, Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene, BMC Biol., 2, 6, 10.1186/1741-7007-2-6
Dominguez, 2002, Paired gill slits in a fossil with a calcite skeleton, Nature, 417, 841, 10.1038/nature00805
Donoghue, 2002, Origin and early evolution of vertebrate skeletonization, Microsc. Res. Tech., 59, 352, 10.1002/jemt.10217
Drager, 1989, The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms, Dev. Biol., 133, 14, 10.1016/0012-1606(89)90292-3
Delsuc, 2006, Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature, 439, 965, 10.1038/nature04336
Emlet, 1985, Crystal axes in recent and fossil adult echinoids indicate trophic mode of larval development, Science, 230, 937, 10.1126/science.230.4728.937
Ettensohn, 1997, The morphogenesis of the skeletal system of the sea urchin embryo, vol. VII, 225
Ettensohn, 2003, Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo, Development, 130, 2917, 10.1242/dev.00511
Exposito, 1994, Identification of a cell lineage-specific gene coding for a sea urchin alpha 2(IV)-like collagen chain, J. Biol. Chem., 269, 13167, 10.1016/S0021-9258(17)36814-X
Farach-Carson, 1989, A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo, J. Cell Biol., 109, 1289, 10.1083/jcb.109.3.1289
Fisher, 2001, Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin, Biochem. Biophys. Res. Commun., 280, 460, 10.1006/bbrc.2000.4146
Fuchikami, 2002, T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo, Development, 129, 5205, 10.1242/dev.129.22.5205
Gee, 1996
George, 1991, Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein, Dev. Biol., 147, 334, 10.1016/0012-1606(91)90291-A
Hanalych, 2004, The new view of animal phylogeny, Annu. Rev. Ecol. Evol. Syst., 35, 229, 10.1146/annurev.ecolsys.35.112202.130124
Harkey, 1995, Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule, Dev. Biol., 168, 549, 10.1006/dbio.1995.1101
Heatfield, 1975, Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus, J. Morphol., 145, 13, 10.1002/jmor.1051450103
Holland, 2001, Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology, BioEssays, 23, 142, 10.1002/1521-1878(200102)23:2<142::AID-BIES1021>3.0.CO;2-5
Illies, 2002, Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus, Dev. Genes Evol., 212, 419, 10.1007/s00427-002-0261-0
InterPro Consortium (R. Apweiler, T.K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, P. Bucher, L. Cerutti, F. Corpet, M.D.R. Croning, R. Durbin, L. Falquet, W. Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn, A. Kanapin, Y. Karavidopoulou, R. Lopez, B. Marx, N.J. Mulder, T.M. Oinn, M. Pagni, F. Servant, C.J.A. Sigrist, E.M. Zdobnov), 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucl. Acid. Res. 29, 37–40.
Jefferies, 1986, The Ancestry of the Vertebrates, British Museum (Natural History), London
Kabakoff, 1992, Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation, Dev. Biol., 150, 294, 10.1016/0012-1606(92)90243-A
Katoh-Fukui, 1991, The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus, Dev. Biol., 145, 201, 10.1016/0012-1606(91)90226-S
Kawasaki, 2006, Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family, J. Exp. Zool., 306B, 1, 10.1002/jez.b.21088
Kawasaki, 2004, Genetic basis for the evolution of vertebrate mineralized tissue, Proc. Natl. Acad. Sci. U. S. A., 101, 11356, 10.1073/pnas.0404279101
Kawasaki, 2005, Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth, Proc. Natl. Acad. Sci. U. S. A., 102, 18063, 10.1073/pnas.0509263102
Killian, 1996, Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules, J. Biol. Chem., 271, 9150, 10.1074/jbc.271.15.9150
Kitajima, 2000, Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton, Dev. Growth Differ., 42, 295, 10.1046/j.1440-169x.2000.00513.x
Kurokawa, 1999, HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo, Mech. Dev., 80, 41, 10.1016/S0925-4773(98)00192-0
Lambert, 1990, Protochordate biomineralization, 461
Leaf, 1987, Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo, Dev. Biol., 121, 29, 10.1016/0012-1606(87)90135-7
Lee, 1999, SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene, Dev. Growth Differ., 41, 303, 10.1046/j.1440-169X.1999.413429.x
Letunic, 2006, SMART 5: domains in the context of genomes and networks, Nucleic Acids Res., 34, D257, 10.1093/nar/gkj079
Lindskog, 1997, Structure and mechanism of carbonic anhydrase, Pharmacol. Ther., 74, 1, 10.1016/S0163-7258(96)00198-2
Logan, 1999, Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo, Development, 126, 345, 10.1242/dev.126.2.345
Markel, 1986, Ultrastructural investigation of matrix mediated biomineralization in echinoids, Zoomorphology, 105, 197
Mavrogiannis, 2001, Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects, Nat. Genet., 27, 17, 10.1038/83703
Mitsunga, 1986, Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules, Cell Differ., 18, 257, 10.1016/0045-6039(86)90057-6
Oliveri, 2002, A gene regulatory network that directs micromere specification in the sea urchin embryo, Dev. Biol., 246, 209, 10.1006/dbio.2002.0627
Ortega, 2003, How proteases regulate bone morphogenesis, Ann. N. Y. Acad Sci., 995, 109, 10.1111/j.1749-6632.2003.tb03214.x
Panopoulou, 2003, New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes, Genome Res., 13, 1056, 10.1101/gr.874803
Peled-Kamar, 2002, Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule, Exp. Cell Res., 272, 56, 10.1006/excr.2001.5398
Pennington, 1990, Consequences of the calcite skeleton of planktonic echinoderm larvae for orientation, swimming, and shape, Biol. Bull., 179, 121, 10.2307/1541746
Peterson, 2001, Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences, Evol. Dev., 3, 170, 10.1046/j.1525-142x.2001.003003170.x
Poustka, 2003, Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters, Genome Res., 13, 2736, 10.1101/gr.1674103
Qin, 2004, Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis, Crit. Rev. Oral Biol. Med., 15, 126, 10.1177/154411130401500302
Raouf, 2000, Ets transcription factors and targets in osteogenesis, Oncogene, 19, 6455, 10.1038/sj.onc.1204037
Richardson, 1989, Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins, Dev. Biol., 132, 266, 10.1016/0012-1606(89)90222-4
Robertson, 2002, The expression of SpRunt during sea urchin embryogenesis, Mech. Dev., 117, 327, 10.1016/S0925-4773(02)00201-0
Samanta, M.P., Tongprasit, W., Istrail, S., Cameron, A., Tu, Q., Davidson, E.H., Stolc, V., 2006. A high-resolution transcriptome map of the sea urchin embryo.
Seto, 2004, The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae, J. Struct. Biol., 148, 123, 10.1016/j.jsb.2004.04.001
Shu, 2003, A new species of yunnanozoan with implications for deuterostome evolution, Science, 299, 1380, 10.1126/science.1079846
Shu, 2004, Ancestral echinoderms from the Chengjiang deposits of China, Nature, 430, 422, 10.1038/nature02648
Sly, 1995, Human carbonic anhydrases and carbonic anhydrase deficiencies, Annu. Rev. Biochem., 64, 375, 10.1146/annurev.bi.64.070195.002111
Steck, 2001, Chondrocyte expressed protein-68 (CEP-68), a novel human marker gene for cultured chondrocytes, Biochem. J., 353, 169, 10.1042/0264-6021:3530169
Sucov, 1987, A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein, Dev. Biol., 120, 507, 10.1016/0012-1606(87)90254-5
Suzuki, 1997, Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus, Zool. Sci., 14, 449, 10.2108/zsj.14.449
Urry, 2000, Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis, Dev. Biol., 225, 201, 10.1006/dbio.2000.9828
Veis, 2002, Mineral-related proteins of sea urchin teeth: Lytechinus variegatus, Microsc. Res. Tech., 59, 342, 10.1002/jemt.10216
Weitzel, 2004, Differential stability of beta-catenin along the animal–vegetal axis of the sea urchin embryo mediated by dishevelled, Development, 131, 2947, 10.1242/dev.01152
Wessel, 1991, Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis, Dev. Biol., 148, 261, 10.1016/0012-1606(91)90335-Z
Wilt, 2002, Biomineralization of the spicules of sea urchin embryos, Zool. Sci., 19, 253, 10.2108/zsj.19.253
Wilt, 2005, Developmental biology meets materials science: morphogenesis of biomineralized structures, Dev. Biol., 280, 15, 10.1016/j.ydbio.2005.01.019
Wilt, 2003, Development of calcareous skeletal elements in invertebrates, Differentiation, 71, 237, 10.1046/j.1432-0436.2003.7104501.x
Yamauchi, 2005, Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells, Am. J. Physiol.: Endocrinol. Metab., 288, 608
