A genetic algorithm-based method for feature subset selection

Soft Computing - Tập 12 Số 2 - Trang 111-120 - 2007
Feng Tan1, Xuezheng Fu1, Yanqing Zhang1, Anu G. Bourgeois1
1Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alon U et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750

Breiman L, Forest R Technical Report. Stat. Dept, UCB

Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data mining Knowl Dis 2(2):121–167

Chuang H-Y et al (2004) Identifying significant genes from microarray data. Fourth IEEE symposium on bioinformatics and bioengineering (BIBE’04) p. 358

Dash M, Liu H (1999) Handling large unsupervised data via dimensionality reduction. ACM SIGMOD workshop on research issues in data mining and knowledge discovery

Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845–889

Furey T, Cristianini N, Bednarski DN, Schummer DM (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914

Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection (Kernel Machines Section). JMLR 3:1157–1182

Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer, New York

Hsu FD, Shapiro J, Taksa I (2002) Methods of data fusion in information retreival: Rank vs. Score combination. DIMACS Technical report 58

Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform 6:148

LeCun Y, Denker JS, Solla SA (1990) Optimum brain damage. Touretzky DS (ed) Advances in neural information processing systems II, Morgan Kaufmann, Mateo

Liu Y (2004) A comparative study on feature selection methods for drug discovery. J Chem Inform Comput Sci 44(5):1823–1828

Liu H, Setiono R (1995) χ2: feature selection and discretization of numeric attributes. In: Proceedings IEEE 7th international conference on tools with artificial intelligence, pp 338–391

Liu H, Li J, Wong L (2002) A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern. Genom Inform 13:51–60

Liu H et al. (2005) Evolving feature selection. Intelligent systems. IEEE Vol 20(6): 64–76

Liu X, Krishnan A, Mondry A (2005) An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinform 6:76

Mao Y, Zhou X, Pi D, Sun Y, STC Wong (2005) Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. J Biomed Biotechnol 2:160–171

Noble WS (2004) Support vector machine applications in computational biology. In: Schoelkopf B, suda KT, Vert J.-P (eds). Kernel methods in computational biology. MIT, New York, pp 71–92

Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Patt Anal Mach Intell 27(8):1226–1238

Schölkopf B, Guyon I, Weston J (2003) Statistical learning and kernel methods in bioinformatics. In: Frasconi P, Shamir R (eds) Artificial intelligence and heuristic methods in bioinformatics. vol 183. IOS Press, Amsterdam, pp 1–21

Singh D (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

Singh D et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

Somorjai RL, Dolenko B, Baumgartner R (2003) Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics. 12; 19(12):1484–91

Space Physics Group; Applied Physics Laboratory; Johns Hopkins University; Johns Hopkins Road; Laurel; MD 20723

Vapnik V (1998) Statistical learning theory. Wiley, New York

Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intell Syst 13:44–49

Yu L, Liu H (2003) Efficiently handling feature redundancy in high-dimensional data. In: Proceedings of ACM SIGKDD international conference knowledge discovery and data mining (KDD 03), ACM, New york, pp. 685–690

Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2000) Feature Selection for SVMs. Adv Neural Inform Process Syst 13