A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory

Journal of Marine Systems - Tập 64 Số 1-4 - Trang 89-109 - 2007
Marcello Vichi1, Nadia Pinardi2, Simona Masina1
1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, V. Creti 12, 40128 Bologna, Italy
2Alma Mater Studiorum Università di Bologna, Centro Interdipartimentale per la Ricerca sulle Scienze Ambientali, Ravenna, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen, 1998, A 1-D vertically resolved modelling study of the ecosystem dynamics of the Middle and Southern Adriatic Sea, J. Mar. Syst., 18, 265, 10.1016/S0924-7963(98)00015-3

Allen, 2001, A highly spatially resolved ecosystem model for the North West European Continental Shelf, Sarsia, 86, 423, 10.1080/00364827.2001.10420484

Andersen, 2004, Stoichiometry and population dynamics, Ecol. Lett., 7, 884, 10.1111/j.1461-0248.2004.00646.x

Anderson, 2005, Plankton functional type modelling: running before we can walk?, J. Plankton. Res., 27, 1073, 10.1093/plankt/fbi076

Archer, 2000, A model of the iron cycle in the ocean, Glob. Biogeochem. Cycles, 14, 269, 10.1029/1999GB900053

Aumont, 2003, An ecosystem model of the global ocean including Fe, Si, P co-limitations, Glob. Biogeochem. Cycles, 17, 1060, 10.1029/2001GB001745

Baretta, 1988

Baretta, 1995, The European Regional Seas Ecosystem Model, a complex marine ecosystem model, J. Sea Res., 33, 233, 10.1016/0077-7579(95)90047-0

Baretta-Bekker, 1995, The microbial food web in the European Regional Seas Ecosystem Model, J. Sea Res., 33, 363, 10.1016/0077-7579(95)90053-5

Baretta-Bekker, 1997, Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, J. Sea Res., 38, 195, 10.1016/S1385-1101(97)00052-X

Batchelor, 1967

Behrenfeld, 2004, In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis, J. Phycol., 40, 4, 10.1046/j.1529-8817.2004.03083.x

Bidle, 2001, Bacterial control of silicon regeneration from diatom detritus: significance of bacterial ectohydrolases and species identity, Limnol. Oceanogr., 46, 1606, 10.4319/lo.2001.46.7.1606

Blackford, 2002, Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model, J. Mar. Syst., 36, 239, 10.1016/S0924-7963(02)00182-3

Blackford, 1995, A structure and methodology for marine ecosystem modelling, J. Sea Res., 33, 247, 10.1016/0077-7579(95)90048-9

Blackford, 2004, Ecosystem dynamics at six contrasting sites: a generic modelling study, J. Mar. Syst., 52, 191, 10.1016/j.jmarsys.2004.02.004

Boyd, 2000, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695, 10.1038/35037500

Broekhuizen, 1995, Modelling the dynamics of the North Sea's mesozooplankton, J. Sea Res., 33, 381, 10.1016/0077-7579(95)90054-3

Coale, 1996, Control of community growth and export production by upwelled iron in the equatorial Pacific ocean, Nature, 379, 621, 10.1038/379621a0

Denman, 2003, Modelling planktonic ecosystems: parameterizing complexity, Prog. Oceanogr., 57, 429, 10.1016/S0079-6611(03)00109-5

deYoung, 2004, Challenges of modeling ocean basin ecosystems, Science, 304, 1463, 10.1126/science.1094858

Doney, 2004, Evaluating global ocean carbon models: the importance of realistic physics, Glob. Biogeochem. Cycles, 18, 3017, 10.1029/2003GB002150

Ebenhöh, 1997, The primary production module in the marine ecosystem model ERSEM II with emphasis on the light forcing, J. Sea Res., 38, 173, 10.1016/S1385-1101(97)00043-9

Elser, 2005, Biosimplicity via stoichiometry: the evolution of food-web structure and processes, 7

Fennel, 2005, A unifying framework for marine ecological model comparison, Deep-Sea Res., Part 2, Top. Stud. Oceanogr., 52, 1344, 10.1016/j.dsr2.2005.01.002

Flynn, 2001, A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton, J. Plankton. Res., 23, 977, 10.1093/plankt/23.9.977

Flynn, 2001, A comparison of two N-irradiance interaction models of phytoplankton growth, Limnol. Oceanogr., 46, 1794, 10.4319/lo.2001.46.7.1794

Frost, 2004, The stoichiometry of dissolved organic carbon, nitrogen, and phosphorus release by a planktonic grazer, Daphnia, Limnol. Oceanogr., 49, 1802, 10.4319/lo.2004.49.5.1802

Fung, 2000, Iron supply and demand in the upper ocean, Glob. Biogeochem. Cycles, 14, 281, 10.1029/1999GB900059

Geider, 1996, A dynamic model of photoadaptation in phytoplankton, Limnol. Oceanogr., 41, 1, 10.4319/lo.1996.41.1.0001

Geider, 1997, A dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and chlorophyll a:carbon ratio to light, nutrient limitation and temperature, Mar. Ecol. Prog. Ser., 148, 187, 10.3354/meps148187

Geider, 1998, A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679, 10.4319/lo.1998.43.4.0679

Gentleman, 2003, Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics, Deep-Sea Res., Part 2, Top. Stud. Oceanogr., 50, 2847, 10.1016/j.dsr2.2003.07.001

Gibson, 2005, Non-linear dynamics of a pelagic ecosystem model with multiple predator and prey types, J. Plankton. Res., 27, 427, 10.1093/plankt/fbi016

Ho, 2003, The elemental composition of some marine phytoplankton, J. Phycol., 39, 1145, 10.1111/j.0022-3646.2003.03-090.x

Hofmann, 1998, Overview of Interdisciplinary Modeling for Marine Ecosystems, vol. 10, 507

Johnson, 1997, What controls dissolved iron concentrations in the world ocean?, Mar. Chem., 57, 137, 10.1016/S0304-4203(97)00043-1

Kraemer, 2004, Iron oxide dissolution and solubility in the presence of siderophores, Aquat. Sci., 66, 3, 10.1007/s00027-003-0690-5

Le Quéré, 2005, Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Chang. Biol., 11, 2016, 10.1111/j.1365-2486.2005.1004.x

Lefevre, 1999, Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations, Glob. Biogeochem. Cycles, 13, 727, 10.1029/1999GB900034

Leonard, 1999, An iron-based ecosystem model of the central equatorial Pacific, J. Geophys. Res., 104, 1325, 10.1029/1998JC900049

Martin, 1991, The case for iron, Limnol. Oceanogr., 36, 1793, 10.4319/lo.1991.36.8.1793

Martin, 1994, Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123, 10.1038/371123a0

McCarthy, 2002, Biological–physical interactions in the sea: emergent findings and new directions, vol. 12, 1

Mitra, 2005, Predator–prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad?, J. Plankton. Res., 27, 393, 10.1093/plankt/fbi022

Obernosterer, 2001, Spatial and diurnal dynamics of dissolved organic matter (DOM) fluorescence and H2O2 and the photochemical oxygen demand of surface water DOM across the subtropical Atlantic Ocean, Lymnol. Oceanogr., 46, 632, 10.4319/lo.2001.46.3.0632

Ogawa, 2003, Dissolved organic matter in oceanic waters, J. Oceanogr., 59, 129, 10.1023/A:1025528919771

Olsen, 2005, The effect of wind speed products and wind speed–gas exchange relationships on interannual variability of the air–sea CO2 gas transfer velocity, Tellus B, 57, 95, 10.1111/j.1600-0889.2005.00134.x

Parekh, 2004, Modeling the global ocean iron cycle, Glob. Biogeochem. Cycles, 18, GB1002, 10.1029/2003GB002061

Petihakis, 2002, Modelling the spatial and temporal variability of the Cretan Sea ecosystem, J. Mar. Syst., 36, 173, 10.1016/S0924-7963(02)00186-0

Platt, 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687

Polimene, L., Allen, J.I., Zavatarelli, M., in press. Dissolved Organic Carbon–bacteria interactions in marine systems: a theoretical modelling study. Aquat. Microb. Ecol.

Price, 2005, The elemental stoichiometry and composition of an iron-limited diatom, Limnol. Oceanogr., 50, 1159, 10.4319/lo.2005.50.4.1159

Raick, 2005, Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a ID interdisciplinary model, J. Mar. Syst., 55, 177, 10.1016/j.jmarsys.2004.09.005

Reinart, 1998, Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies, J. Geophys. Res., 103, 7749, 10.1029/97JC03645

Ruardij, 1995, Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea, J. Sea Res., 33, 453, 10.1016/0077-7579(95)90057-8

Ruardij, 1997, The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas: a model study, J. Sea Res., 38, 311, 10.1016/S1385-1101(97)00042-7

Sakshaug, 1997, Parameters of photosynthesis: definitions, theory and interpretation of results, J. Plankton. Res., 19, 1637, 10.1093/plankt/19.11.1637

Schmidt, 1999, Assimilation of Fe and carbon by marine copepods from Fe-limited and Fe-replete diatom prey, J. Plankton. Res., 21, 1753, 10.1093/plankt/21.9.1753

Smith, 1997

Sterner, 2002

Strzepek, 2004, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature, 431, 689, 10.1038/nature02954

Sunda, 1997, Control of dissolved iron concentrations in the world ocean: a comment, Mar. Chem., 57, 169, 10.1016/S0304-4203(97)00045-5

Sunda, 1995, Iron uptake and growth limitation in oceanic and coastal phytoplankton, Mar. Chem., 50, 189, 10.1016/0304-4203(95)00035-P

Sunda, 1997, Interrelated influence of iron, light and cell size on marine phytoplankton growth, Nature, 390, 389, 10.1038/37093

Taylor, 2002, Extraction of a weak climatic signal by an ecosystem, Nature, 416, 629, 10.1038/416629a

Timmermans, 2004, Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern ocean, Limnol. Oceanogr., 49, 2141, 10.4319/lo.2004.49.6.2141

Timmermans, 2005, Physiological responses of three species of marine picophytoplankton to ammonium, phosphate, iron and light limitation, J. Sea Res., 53, 109, 10.1016/j.seares.2004.05.003

Varela, 1995, Modelling primary production in the North Sea using the European Regional Seas Ecosystem Model, J. Sea Res., 33, 337, 10.1016/0077-7579(95)90052-7

Vichi, M., 2002. Predictability studies of coastal marine ecosystem behavior. Ph.D. thesis, University of Oldenburg, Oldenburg, Germany. URL http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2002/vicpre02/vicpre02.html.

Vichi, 1998, Seasonal modulation of microbial-mediated carbon fluxes in the Northern Adriatic Sea, Fisheries Oceanogr., 7, 182, 10.1046/j.1365-2419.1998.00082.x

Vichi, 2003, Response of a complex ecosystem model of the northern Adriatic Sea to a regional climate change scenario, Clim. Res., 24, 141, 10.3354/cr024141

Vichi, 2003, Calibration and validation of a one-dimensional complex marine biogeochemical fluxes model in different areas of the northern Adriatic shelf, Ann. Geophys., 21, 413, 10.5194/angeo-21-413-2003

Vichi, 2004, Link or sink: a modelling interpretation of the open Baltic biogeochemistry, Biogeosciences, 1, 79, 10.5194/bg-1-79-2004

Vichi, 2006, A generalized model of pelagic biogeochemistry for the global ocean ecosystem: Part II. Numerical simulations, J. Mar. Syst.

Webb, 1974, Carbon dioxide exchange of Alnus rubra: a mathematical model, Ecologia, 17, 281

Worden, 2004, Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component, Limnol. Oceanogr., 49, 168, 10.4319/lo.2004.49.1.0168

Zavatarelli, 2000, The dynamics of the Adriatic Sea ecosystem; an idealized model study, Deep-Sea Res., Part 1, Oceanogr. Res. Pap., 47, 937, 10.1016/S0967-0637(99)00086-2

Zeebe, 2001