A generalized method for the segmentation of exudates from pathological retinal fundus images

Biocybernetics and Biomedical Engineering - Tập 38 - Trang 27-53 - 2018
Jaskirat Kaur1, Deepti Mittal1
1Electrical and Instrumentation Engineering Department, Thapar University, Patiala, India

Tài liệu tham khảo

Sarah, 2004, Global prevalence of diabetes: estimates for the year 2000 and projection for 2030, Diabetes Care, 27, 1047, 10.2337/diacare.27.5.1047 Chu, 2008, Diabetic retinopathy. A review, Drug Dev Res, 69, 1, 10.1002/ddr.20222 Frith, 2001 2006, 195 Somasundaram, 2014, Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach, Int J Appl Eng Res, 9, 30459 Phillips, 1993, 90 Ege, 2000, Screening for diabetic retinopathy using computer based image analysis and statistical classification, Comput Methods Programs Biomed, 62, 165, 10.1016/S0169-2607(00)00065-1 Wang, 2000, An effective approach to detect lesions in color retinal images, 1 Sánchez, 2009, Retinal image analysis based on mixture models to detect hard exudates, Med Image Anal, 13, 650, 10.1016/j.media.2009.05.005 García, 2009, Neural network based detection of hard exudates in retinal images, Comput Methods Programs Biomed, 93, 9, 10.1016/j.cmpb.2008.07.006 Yazid, 2012, Automated identification of exudates and optic disc based on inverse surface thresholding, J Med Syst, 36, 1997, 10.1007/s10916-011-9659-4 Walter, 2002, A contribution of image processing to the diagnosis of diabetic retinopathy – detection of exudates in color fundus images of the human retina, IEEE Trans Med Imaging, 21, 1236, 10.1109/TMI.2002.806290 Sopharak, 2008, Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods, Comput Med Imaging Graph, 32, 720, 10.1016/j.compmedimag.2008.08.009 Welfer, 2010, A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images, Comput Med Imaging Graph, 34, 228, 10.1016/j.compmedimag.2009.10.001 Zhang, 2014, Exudate detection in color retinal images for mass screening of diabetic retinopathy, Med Image Anal, 18, 1026, 10.1016/j.media.2014.05.004 Sopharak, 2009, Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering, Sensors, 9, 2148, 10.3390/s90302148 Osareh, 2003, 1220 Niemeijer, 2007, Automated detection and differentiation of Drusen, exudates, and cotton-wool spots in digital color fundus photographs for early diagnosis of diabetic retinopathy, Investig Ophthalmol Visual Sci, 48, 2260, 10.1167/iovs.06-0996 Giancardo, 2012, Exudate-based diabetic macular edema detection in fundus images using publicly available datasets, Med Image Anal, 16, 216, 10.1016/j.media.2011.07.004 Sidibé, 2015, Discrimination of retinal images containing bright lesions using sparse coded features and SVM, Comput Biol Med, 62, 175, 10.1016/j.compbiomed.2015.04.026 Osareh, 2001, Automatic recognition of exudative maculopathy using fuzzy c-means clustering and neural networks, Med Image Understand Anal, 3, 49 Usher, 2004, Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening, Diabetic Med, 21, 84, 10.1046/j.1464-5491.2003.01085.x Reza, 2009, Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds, J Med Syst, 33, 73, 10.1007/s10916-008-9166-4 Reza, 2011, Diagnosis of diabetic retinopathy. Automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation, J Med Syst, 35, 1491, 10.1007/s10916-009-9426-y Youssef, 2012, Accurate detection of blood vessels improves the detection of exudates in color fundus images, Comput Methods Programs Biomed, 108, 1052, 10.1016/j.cmpb.2012.06.006 Harangi, 2012, Automatic exudate detection with improved Naive–Bayes classifier Rajput, 2014, Detection and classification of exudates using k-means clustering in color retinal images, 126 Lahmiri, 2014, Automated detection of circinate exudates in retina digital images using empirical mode decomposition and the entropy and uniformity of the intrinsic mode functions, Biomedizinische Technik, 59, 357, 10.1515/bmt-2013-0082 Wisaeng, 2015, Automatic detection of exudates in retinal images based on threshold moving average models, Biophysics, 60, 288, 10.1134/S0006350915020220 Jaya, 2015, Detection of hard exudates in colour fundus images using fuzzy support vector machine-based expert system, J Digital Imaging, 28, 761, 10.1007/s10278-015-9793-5 Kaur, 2015, Segmentation and measurement of exudates in fundus images of the retina for detection of retinal disease, J Biomed Eng Med Imaging, 2, 27 Chugh, 2014, Exudates segmentation in retinal fundus images for the detection of diabetic retinopathy, Int J Eng Res Technol, 3, 673 Mishra, 2015, Designing of computer aided diagnostic system for the identification of exudates in retinal fundus images, J Biomed Eng Med Imaging, 2, 29 Mittal, 2015, Automated detection and segmentation of Drusen in retinal fundus images, Comput Electr Eng, 47, 82, 10.1016/j.compeleceng.2015.08.014 Kaur, 2017, A generalized method for the detection of vascular structure in pathological retinal images, Biocybern Biomed Eng, 37, 184, 10.1016/j.bbe.2016.09.002 Hoover, 2000, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Trans Med Imaging, 19, 203, 10.1109/42.845178 Decencière, 2014, Feedback on a publicly distributed image database: The Messidor database, Image Anal Stereol, 33, 231, 10.5566/ias.1155 Kauppi, 2007, The DIARETDB1 diabetic retinopathy database and evaluation protocol Decencière, 2013, TeleOphta: machine learning and image processing methods for teleophthalmology, IRBM, 34, 196, 10.1016/j.irbm.2013.01.010 Liu, 2017, A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images, Comput Med Imaging Graph, 55, 78, 10.1016/j.compmedimag.2016.09.001 Figueiredo, 2014, Wavelet-based computer-aided detection of bright lesions in retinal fundus images. CompIMAGE 2014, Lect Notes Comput Sci, 8641, 234, 10.1007/978-3-319-09994-1_21 Figueiredo, 2015, Automated lesion detectors in retinal fundus images, Comput Biol Med, 66, 47, 10.1016/j.compbiomed.2015.08.008 Levinshtein, 2009, Turbopixels: fast superpixels using geometric flows, IEEE Trans Pattern Anal Mach Intell, 31, 2290, 10.1109/TPAMI.2009.96