A generalized line tension model for precipitate strengthening in metallic alloys
Tài liệu tham khảo
Alizadeh, 2020, Interaction between basal dislocations and β1′ precipitates in Mg-4 wt%Zn alloys: mechanisms and strengthening, Acta Mater., 186, 475, 10.1016/j.actamat.2020.01.028
Ardell, 1985, Precipitation hardening, Metall. Trans. A, 16, 2131, 10.1007/BF02670416
Bacon, 1967, A method for describing a flexible dislocation, Phys. Stat. Solidi (B), 23, 527, 10.1002/pssb.19670230212
Bacon, 1973, The effect of dislocation self-interaction on the orowan stress, Phil. Mag., 28, 1241, 10.1080/14786437308227997
Bellón, 2020, An analysis of the influence of the precipitate type on the mechanical behavior of Al-Cu alloys by means of micropillar compression tests, Acta Mater., 194, 207, 10.1016/j.actamat.2020.05.040
Bertin, 2018, A FFT-based formulation for discrete dislocation dynamics in heterogeneous media, J. Comput. Phys., 355, 366, 10.1016/j.jcp.2017.11.020
Bocchini, 2018, Dislocation dynamics simulations of precipitation-strengthened ni- and co-based superalloys, Materialia, 1, 211, 10.1016/j.mtla.2018.05.010
Bonny, 2011, Interaction of screw and edge dislocations with cromium precipitates in ferritic iron: an atomistic study, J. Nucl. Mater., 416, 70, 10.1016/j.jnucmat.2010.11.095
Brown, 1964, The self-stress of dislocations and the shape of extended nodes, Phil. Mag., 10, 441, 10.1080/14786436408224223
Cho, 2017, Mobility law of dislocations with several character angles and temperatures in FCC aluminum, Int. J. Plast., 90, 66, 10.1016/j.ijplas.2016.12.004
Djaka, 2017, Field dislocation mechanics for heterogeneous elastic materials: A numerical spectral approach, Comput. Methods Appl. Mech. Engrg., 315, 921, 10.1016/j.cma.2016.11.036
Esteban-Manzanares, 2019, Strengthening of Al–Cu alloys by Guinier–Preston zones: Predictions from atomistic simulations, J. Mech. Phys. Solids, 132, 10.1016/j.jmps.2019.07.018
Esteban-Manzanares, 2019, Basal dislocation/precipitate interactions in Mg-Al alloys: an atomistic investigation, Modelling Simulation Mater. Sci. Eng., 27, 10.1088/1361-651X/ab2de0
Esteban-Manzanares, 2019, An atomistic investigation of the interaction of dislocations with guinier-preston zones in Al-Cu alloys, Acta Mater., 162, 189, 10.1016/j.actamat.2018.09.052
Foreman, 1966, Dislocation movement through random arrays of obstacles, Phil. Mag., 14, 911, 10.1080/14786436608244762
Friedel, 1964
Hu, 2021, Modeling peak-aged precipitate strengthening in al–mg–si alloys, J. Mech. Phys. Solids, 151, 10.1016/j.jmps.2021.104378
Kaira, 2018, Microstructural evolution and deformation behavior of Al-Cu alloys: A transmission x-ray microscopy (txm) and micropillar compression study, Acta Mater., 144, 419, 10.1016/j.actamat.2017.11.009
Kelly, 1971, Strengthening methods in crystals
Kocks, 1966, A statistical theory of flow stress and work-hardening, Phil. Mag., 13, 541, 10.1080/14786436608212647
Kohnert, 2021, Spectral discrete dislocation dynamics with anisotropic short range interactions, Comput. Mater. Sci., 189, 10.1016/j.commatsci.2020.110243
Lehtinen, 2016, Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations, Phys. Rev. E, 93, 10.1103/PhysRevE.93.013309
Martin, 1998
Mohles, 2001, Simulations of dislocation glide in overaged precipitation-hardened crystals, Phil. Mag. A, 81, 971, 10.1080/01418610108214330
Mohles, 1999, Simulation of dislocation glide in precipitation hardened materials, Comput. Mater. Sci., 16, 144, 10.1016/S0927-0256(99)00056-7
Monnet, 2018, Multiscale modeling of irradiation hardening: Application to important nuclear materials, J. Nucl. Mater., 508, 609, 10.1016/j.jnucmat.2018.06.020
Monnet, 2011, Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations, Acta Mater., 59, 451, 10.1016/j.actamat.2010.09.039
Nembach, 1997
Nie, 2003, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scr. Mater., 48, 1009, 10.1016/S1359-6462(02)00497-9
Nie, 1998, Microstructural design of high-strength aluminum alloys, J. Phase Equilib., 19, 543, 10.1361/105497198770341734
Nie, 2008, Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates, Acta Mater., 56, 3490, 10.1016/j.actamat.2008.03.028
Nie, 1996, The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys, 1257
Orowan, 1948, Discussion on internal stresses, 451
Queyreau, 2010, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations, Acta Mater., 58, 5586, 10.1016/j.actamat.2010.06.028
Santos-Güemes, 2020, Multiscale modelling of precipitation hardening in Al–Cu alloys: Dislocation dynamics simulations and experimental validation, Acta Mater., 188, 475, 10.1016/j.actamat.2020.02.019
Santos-Güemes, 2021, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ precipitates, J. Mech. Phys. Solids, 151, 10.1016/j.jmps.2021.104375
Santos-Güemes, 2018, Discrete dislocation dynamics simulations of dislocation- θ′ precipitate interaction in Al-Cu alloys, J. Mech. Phys. Solids, 118, 228, 10.1016/j.jmps.2018.05.015
Saroukhani, 2016, Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles, J. Mech. Phys. Solids, 90, 203, 10.1016/j.jmps.2016.02.016
Singh, 2010, Mechanisms of Guinier-Preston zone hardening in the athermal limit, Acta Mater., 58, 5797, 10.1016/j.actamat.2010.06.055
Szajewski, 2021, Dislocation precipitate bypass through elastically mismatched precipitates, Modelling Simulation Mater. Sci. Eng., 29, 10.1088/1361-651X/abd015
Takahashi, 2008, A computational method for dislocation-precipitate interaction, J. Mech. Phys. Solids, 56, 1534, 10.1016/j.jmps.2007.08.002
Takahashi, 2011, Numerical simulation of dislocation-precipitate interactions using dislocation dynamics combined with voxel-based finite elements, vol. 462, 395
Xiang, 2006, Dislocation climb effects on particle bypass mechanisms, Phil. Mag., 86, 3937, 10.1080/14786430600575427