A generalized line tension model for precipitate strengthening in metallic alloys

European Journal of Mechanics - A/Solids - Tập 93 - Trang 104540 - 2022
R. Santos-Güemes, J. Segurado, J. LLorca

Tài liệu tham khảo

Alizadeh, 2020, Interaction between basal dislocations and β1′ precipitates in Mg-4 wt%Zn alloys: mechanisms and strengthening, Acta Mater., 186, 475, 10.1016/j.actamat.2020.01.028 Ardell, 1985, Precipitation hardening, Metall. Trans. A, 16, 2131, 10.1007/BF02670416 Bacon, 1967, A method for describing a flexible dislocation, Phys. Stat. Solidi (B), 23, 527, 10.1002/pssb.19670230212 Bacon, 1973, The effect of dislocation self-interaction on the orowan stress, Phil. Mag., 28, 1241, 10.1080/14786437308227997 Bellón, 2020, An analysis of the influence of the precipitate type on the mechanical behavior of Al-Cu alloys by means of micropillar compression tests, Acta Mater., 194, 207, 10.1016/j.actamat.2020.05.040 Bertin, 2018, A FFT-based formulation for discrete dislocation dynamics in heterogeneous media, J. Comput. Phys., 355, 366, 10.1016/j.jcp.2017.11.020 Bocchini, 2018, Dislocation dynamics simulations of precipitation-strengthened ni- and co-based superalloys, Materialia, 1, 211, 10.1016/j.mtla.2018.05.010 Bonny, 2011, Interaction of screw and edge dislocations with cromium precipitates in ferritic iron: an atomistic study, J. Nucl. Mater., 416, 70, 10.1016/j.jnucmat.2010.11.095 Brown, 1964, The self-stress of dislocations and the shape of extended nodes, Phil. Mag., 10, 441, 10.1080/14786436408224223 Cho, 2017, Mobility law of dislocations with several character angles and temperatures in FCC aluminum, Int. J. Plast., 90, 66, 10.1016/j.ijplas.2016.12.004 Djaka, 2017, Field dislocation mechanics for heterogeneous elastic materials: A numerical spectral approach, Comput. Methods Appl. Mech. Engrg., 315, 921, 10.1016/j.cma.2016.11.036 Esteban-Manzanares, 2019, Strengthening of Al–Cu alloys by Guinier–Preston zones: Predictions from atomistic simulations, J. Mech. Phys. Solids, 132, 10.1016/j.jmps.2019.07.018 Esteban-Manzanares, 2019, Basal dislocation/precipitate interactions in Mg-Al alloys: an atomistic investigation, Modelling Simulation Mater. Sci. Eng., 27, 10.1088/1361-651X/ab2de0 Esteban-Manzanares, 2019, An atomistic investigation of the interaction of dislocations with guinier-preston zones in Al-Cu alloys, Acta Mater., 162, 189, 10.1016/j.actamat.2018.09.052 Foreman, 1966, Dislocation movement through random arrays of obstacles, Phil. Mag., 14, 911, 10.1080/14786436608244762 Friedel, 1964 Hu, 2021, Modeling peak-aged precipitate strengthening in al–mg–si alloys, J. Mech. Phys. Solids, 151, 10.1016/j.jmps.2021.104378 Kaira, 2018, Microstructural evolution and deformation behavior of Al-Cu alloys: A transmission x-ray microscopy (txm) and micropillar compression study, Acta Mater., 144, 419, 10.1016/j.actamat.2017.11.009 Kelly, 1971, Strengthening methods in crystals Kocks, 1966, A statistical theory of flow stress and work-hardening, Phil. Mag., 13, 541, 10.1080/14786436608212647 Kohnert, 2021, Spectral discrete dislocation dynamics with anisotropic short range interactions, Comput. Mater. Sci., 189, 10.1016/j.commatsci.2020.110243 Lehtinen, 2016, Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations, Phys. Rev. E, 93, 10.1103/PhysRevE.93.013309 Martin, 1998 Mohles, 2001, Simulations of dislocation glide in overaged precipitation-hardened crystals, Phil. Mag. A, 81, 971, 10.1080/01418610108214330 Mohles, 1999, Simulation of dislocation glide in precipitation hardened materials, Comput. Mater. Sci., 16, 144, 10.1016/S0927-0256(99)00056-7 Monnet, 2018, Multiscale modeling of irradiation hardening: Application to important nuclear materials, J. Nucl. Mater., 508, 609, 10.1016/j.jnucmat.2018.06.020 Monnet, 2011, Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations, Acta Mater., 59, 451, 10.1016/j.actamat.2010.09.039 Nembach, 1997 Nie, 2003, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scr. Mater., 48, 1009, 10.1016/S1359-6462(02)00497-9 Nie, 1998, Microstructural design of high-strength aluminum alloys, J. Phase Equilib., 19, 543, 10.1361/105497198770341734 Nie, 2008, Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates, Acta Mater., 56, 3490, 10.1016/j.actamat.2008.03.028 Nie, 1996, The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys, 1257 Orowan, 1948, Discussion on internal stresses, 451 Queyreau, 2010, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations, Acta Mater., 58, 5586, 10.1016/j.actamat.2010.06.028 Santos-Güemes, 2020, Multiscale modelling of precipitation hardening in Al–Cu alloys: Dislocation dynamics simulations and experimental validation, Acta Mater., 188, 475, 10.1016/j.actamat.2020.02.019 Santos-Güemes, 2021, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ precipitates, J. Mech. Phys. Solids, 151, 10.1016/j.jmps.2021.104375 Santos-Güemes, 2018, Discrete dislocation dynamics simulations of dislocation- θ′ precipitate interaction in Al-Cu alloys, J. Mech. Phys. Solids, 118, 228, 10.1016/j.jmps.2018.05.015 Saroukhani, 2016, Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles, J. Mech. Phys. Solids, 90, 203, 10.1016/j.jmps.2016.02.016 Singh, 2010, Mechanisms of Guinier-Preston zone hardening in the athermal limit, Acta Mater., 58, 5797, 10.1016/j.actamat.2010.06.055 Szajewski, 2021, Dislocation precipitate bypass through elastically mismatched precipitates, Modelling Simulation Mater. Sci. Eng., 29, 10.1088/1361-651X/abd015 Takahashi, 2008, A computational method for dislocation-precipitate interaction, J. Mech. Phys. Solids, 56, 1534, 10.1016/j.jmps.2007.08.002 Takahashi, 2011, Numerical simulation of dislocation-precipitate interactions using dislocation dynamics combined with voxel-based finite elements, vol. 462, 395 Xiang, 2006, Dislocation climb effects on particle bypass mechanisms, Phil. Mag., 86, 3937, 10.1080/14786430600575427