A generalized equilibrium model for predicting daily to interannual shoreline response

Journal of Geophysical Research F: Earth Surface - Tập 119 Số 9 - Trang 1936-1958 - 2014
Kristen D. Splinter1, Ian L. Turner1, Mark Davidson2, Patrick L. Barnard3, Bruno Castelle4, Joan Oltman‐Shay5
1Water Research Laboratory, School of Civil and Environmental Engineering; UNSW Australia; Sydney New South Wales Australia
2School of Marine Science and Engineering, Plymouth University, Plymouth, UK
3United States Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, California, USA
4Université de Bordeaux, CNRS, UMR 5805 EPOC, Pessac, France
5NorthWest Research Associates Redmond Washington USA

Tóm tắt

Abstract

Coastal zone management requires the ability to predict coastline response to storms and longer‐term seasonal to interannual variability in regional wave climate. Shoreline models typically rely on extensive historical observations to derive site‐specific calibration. To circumvent the challenge that suitable data sets are rarely available, this contribution utilizes twelve 5+ year shoreline data sets from around the world to develop a generalized model for shoreline response. The shared dependency of model coefficients on local wave and sediment characteristics is investigated, enabling the model to be recast in terms of these more readily measurable quantities. Study sites range from microtidal to macrotidal coastlines, spanning moderate‐ to high‐energy beaches. The equilibrium model adopted here includes time varying terms describing both the magnitude and direction of shoreline response as a result of onshore/offshore sediment transport between the surf zone and the beach face. The model contains two coefficients linked to wave‐driven processes: (1) the response factor (φ) that describes the “memory” of a beach to antecedent conditions and (2) the rate parameter (c) that describes the efficiency with which sand is transported between the beach face and surf zone. Across all study sites these coefficients are shown to depend in a predictable manner on the dimensionless fall velocity (Ω), that in turn is a simple function of local wave conditions and sediment grain size. When tested on an unseen data set, the new equilibrium model with generalized forms ofφandcexhibited high skill (Brier Skills Score, BSS = 0.85).

Từ khóa


Tài liệu tham khảo

10.1016/j.margeo.2004.04.017

Allen M. andJ.Callaghan (1999) Extreme wave conditions for the South Queensland coastal region Report EPA Queensland.

10.1029/2009GL042252

10.1029/JC084iC10p06347

10.2112/JCOASTRES-D-11-00212.1

Birkemeier W. A. H. C.Miller S. D.Wilhelm A. E.DeWall andC. S.Gorbics (1985) User's guide to CERC's Field Research Facility Tech. Rep. Instruction Report‐85‐1 Coastal Eng. Res. Cent. Field Res. Fac. U. S. Army Eng. Waterw. Exp. Sta. Vicksburg Miss.

10.1016/j.coastaleng.2007.12.003

Carley J. T., 1999, The practical application of four commercially available numerical beach morphology models on a high energy coastline, in Proceedings of the Australian Coastal and Ocean Engineering Conference, Perth, AU, 101

10.1016/j.margeo.2007.06.001

Castelle B., 2007, Impact of storms on beach erosion: Broadbeach (Gold Coast, Australia), J. Coastal Res., 50, 534, 10.2112/JCR-SI50-102.1

10.1016/j.margeo.2013.11.003

10.1016/0025-3227(88)90039-4

10.1016/j.coastaleng.2011.03.007

10.1029/2007JF000888

10.1016/j.coastaleng.2010.02.001

10.1016/j.coastaleng.2012.11.002

Dean R. G.(1973) Heuristic models of sand transport in the surf zone in Proceedings of the 1st Australian Cong. on Coastal Eng. Conference on Engineering Dynamics in the Surf Zone pp.209–214 Sydney Australia.

Delft (1970) Gold Coast Queensland Australia—Coastal erosion and related problems Tech. Rep. R257 Delft Hydraulics Laboratory Delft The Netherlands.

Eshleman J. L. P. L.Barnard L. H.Erikson andD. M.Hanes(2007) Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach San Francisco CA 10th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium p.20 North Shore Oahu Hawaii.

10.1029/2009GL040061

10.1016/j.margeo.2013.07.005

10.1016/j.csr.2013.01.017

10.1016/j.coastaleng.2010.05.011

Hanson H. andN.Kraus (1989) Generalized model for simulating shoreline change Report 1 Technical Reference Tech. Rep. U. S. Army Engineer Waterways Experiment Station; Coastal Engineering Research Center (U. S.); United States. Army. Corps of Engineers.

10.1029/2011JF001989

10.1109/MPRV.2003.1251165

10.2112/SI65-302.1

Karunarathna H., 2013, A model for beach plan shape change using an inverse approach, Coastal Dynamics 2013, France, 937

Komar P. D., 1974, Beach Processes and Sedimentation

Larson M. andN.Kraus (1989) SBEACH: Numerical model for simulating storm‐induced beach change; Report 1 Empirical foundation and model development Tech. Rep. CERC 89‐9 Coastal Engineering Research Center Vicksburg Miss.

10.1029/JC095iC07p11575

10.1016/j.margeo.2005.10.003

10.1029/2012GL052180

10.1016/j.coastaleng.2010.02.006

Miller J. K., 2003, Proceedings of Coastal Sediments 2003, 1

10.1016/j.coastaleng.2004.05.006

Miller J. K., 2004, Proceedings of the 29th International Conference on Coastal Engineering, 2009

Nordstrom C. E. andD. L.Inman (1975) Sand level changes on Torrey Pines Beach California MP 11‐75 U. S. Army Corps Engineers Coastal Engineering Research Center Fort Belvoir Va.

Patterson D., 2007, Sand transport and shoreline evolution, Northern Gold Coast, Australia, 9th International Coastal Symposium, Gold Coast, Australia, 147

Pelnard‐Considere R.(1956) Essai de theorie do l'evolution des forms de rivageen plage de sable et de galets 4me Journees de l'Hydraulique Les Energies de la Mer Question III Rapport No. 1 pp.289–298 Societe Hydrotechnique de France Paris France.

10.1016/j.coastaleng.2013.06.006

10.1029/1999JC900112

Plant N. G., 1996, Proceedings of the 25th International Conference On Coastal Engineering, 3521

10.1016/S0025-3227(04)00002-7

10.1016/j.coastaleng.2009.08.006

10.1016/j.csr.2009.05.011

10.1016/j.coastaleng.2009.08.003

10.1016/j.margeo.2010.02.008

10.1016/j.geomorph.2008.12.016

10.2112/1551-5036(2004)020[0523:DSPIBO]2.0.CO;2

10.1016/j.margeo.2012.09.005

10.1029/2010JC006382

10.1109/TGRS.2011.2136351

10.1016/j.csr.2012.07.018

Splinter K. D., 2013, Proceedigs of the 12th International Coastal Symposium (Plymouth England), Journal of Coastal Research, 2179

10.1016/j.coastaleng.2013.02.009

10.1016/j.coastaleng.2013.10.001

Sutherland J., 2003, Proceedings of Coastal Sediments '03, 1

10.1016/j.margeo.2013.07.018

10.1029/2003JC002214

Rooijen A., 2012, Proceedings of the 33rd Conference on Coastal Engineering

10.1016/0025-3227(84)90008-2

10.1016/0025-3227(85)90123-9

10.1029/2009JC005359

10.1029/2010JC006681