A general method for identification of polyhydroxyalkanoic acid synthase genes from pseudomonads belonging to the rRNA homology group I

Springer Science and Business Media LLC - Tập 40 - Trang 669-675 - 1994
Arnulf Timm1, Stefan Wiese1, Alexander Steinbüchel1
1Institut für Mikrobiologie der Georg-August-Universität Göttingen, Göttingen, Germany

Tóm tắt

Using a 30-mer oligonucleotide probe highly specific for polyhydroxyalkanoic acid (PHA) synthase genes, the respective genes of Pseudomonas citronellolis, P. mendocina, Pseudomonas sp. DSM 1650 and Pseudomonas sp. GP4BH1 were cloned from genomic libraries in the cosmid pHC79. A 19.5-kbp and a 22.0-kbp EcoRI restriction fragment of P. citronellolis or Pseudomonas sp. DSM 1650, respectively, conferred the ability to accumulate PHA of medium-chain-length 3-hydroxyalkanoic acids (HA mcl ) from octanoate as well as from gluconate to the PHA-negative mutant P. putida GPp104. An 11.0-kbp EcoRI fragment was cloned from P. mendocina, which restored in GPp104 the ability to synthesize PHA from octanoate but not from gluconate. From Pseudomonas sp. GP4BH1 three different genomic fragments encoding PHA synthases were cloned. This indicated that strain GP4BH1 possesses three different functionally active PHA synthases. Two of these fragments (6.4 kbp and 3.8 kbp) encoded for a PHA synthase, preferentially incorporating hydroxyalkanoic acids of short chain length (HA scl ), and the synthases were expressed in either GPp104 and Alcaligenes eutrophus H16-PHB−4, respectively. The PHA synthase encoded by the third fragment (6.5 kbp) led to the incorporation of HA mcl and was expressed in GPp104 but not in PHB−4.

Tài liệu tham khảo

Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472 Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982 Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK, Chakrabarty AM (1987) A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas genes. Gene 57:61–72 DeSmet M, Eggink G, Witholt B, Kingma J (1983) Characerization of intracellular inclusions formed by Pseudomonas olveovorans during growth on octane. J Bacteriol 154:870–878 Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205 Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analysis of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171:6539–6548 Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 Haywood GW, Anderson AJ, Dawes EA (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476 Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB40135. Appl Environ Microbiol 56:3354–3359 Hohn B, Collins J (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298 Huijberts GNM, Eggink G, DeWaard P, Huisman GW, Witholt B (1992) P. putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544 Huisman GW, DeLeeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954 Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198 Itoh Y, Soldati L, Stalon V, Falmagne P, Terawaki Y, Leisinger T, Haas D (1988) Anabolic carbamoyltransferase of Pseudomonas aeruginos: nucleotide sequence and transcriptional control of the argF structural gene. J Bacteriol 170:2725–2734 Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas olveovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Lynen F, Wieland H (1955) β-Ketothiolase. Methods Enzymol 1:556–573 Nishimura T, Saito T, Tomita K (1978) Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch Microbiol 116:21–27 Palleroni NJ (1984) Pseudomonadaceae, Genus I. Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 141–199 Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polmerase gene (phbC). J Biol Chem 264:15298–15303 Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297 Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-β-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Pühler A (1990) High frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1662–1666 Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222 Schubert P (1990) Molekulare Organisation des PHB-Operons und Charakterisierung des PHB-Synthasegens in Alcaligenes eutrophus. Ph. D. thesis, Georg-August-Universität Gottingen Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847 Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, New York, pp 123–213 Steinbüchel A, Schubert P (1989) Expression of the Alcaligenes eutrophus poly(β-hydroxybutyric acid)-synthetic pathway in Pseudomonas spp. Arch Microbiol 153:101–104 Steinbüchel A, Weise S (1992) A Pseudomonas strain accumulating polyesters of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 37:691–697 Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992a) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230 Steinbüchel A, Krüger N, Valentin H, Timm A, Pries A, Hustede E, Schlegel HB (1992b) Physiological and genetical analysis of polyhydroxyalkanoate biosynthetic pathways. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, D.C., pp 315–327 Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonas. Appl Environ Microbiol 56:3360–3367 Timm A, Steinbüchel A (1992) Cloning and molecular characterization of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30 Timm A, Byrom D, Steinbüchel A (1990) Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33:296–301 Vieira J, Messing J (1982) The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268