A general estimator for the extreme value index: applications to conditional and heteroscedastic extremes

Springer Science and Business Media LLC - Tập 18 - Trang 479-510 - 2015
Laurent Gardes1
1Université de Strasbourg & CNRS, IRMA, UMR 7501, Strasbourg cedex, France

Tóm tắt

The tail behavior of a survival function is controlled by the extreme value index. The aim of this paper is to propose a general procedure for the estimation of this parameter in the case where the observations are not necessarily distributed from the same distribution. The idea is to estimate in a consistent way the survival function and to apply a general functional to obtain a consistent estimator for the extreme value index. This procedure permits to deal with a large set of models such as conditional extremes and heteroscedastic extremes. The consistency of the obtained estimator is established under general conditions. A simulation study and a concrete application on financial data are proposed to illustrate the finite sample behavior of the proposed procedure.

Tài liệu tham khảo

Araújo Santos, P., Fraga Alves, M.I., Gomes, M.I.: Peaks Over Random Threshold methodology for tail index and high quantile estimation. REVSTAT 4(3), 227–247 (2006) Beirlant, J., Dierckx, G., Guillou, A.: Estimation of the extreme value index and generalized quantile plots. Bernoulli 11(6), 949–970 (2005) Beirlant, J., Dierckx, G., Guillou, A., Fils-Villetard, A.: Estimation of the extreme value index and extreme quantiles under random censoring. Extremes 10, 151–174 (2007) Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of extremes. Theory and applications, Wiley (2004) Beirlant, J., Vynckier, P., Teugels, J.: Excess functions and estimation of the extreme value index. Bernoulli 2, 293–318 (1996) Chavez-Demoulin, V., Davison, A.C.: Generalized additive modelling of sample extremes. J. R. Stat. Soc. Ser. C 54, 207–222 (2005) Csörgo, S., Deheuvels, P., Mason, D.: Kernel estimates of the tail index of a distribution. Ann. Stat. 13(3), 1050–1077 (1985) Daouia, A., Gardes, L., Girard, S.: On kernel smoothing for extremal quantile regression. Bernoulli 19(5B), 2557–2589 (2013) Davison, A.C., Ramesh, N.I.: Local likelihood smoothing of sample extremes. J. R. Stat. Soc. Ser. B 62, 191–208 (2000) Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B 52, 393–442 (1990) Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme value distribution. Ann. Stat. 17(4), 1833–1855 (1989) Dubhashi, D., Parconesi, A.: Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, New York (2009) Einmahl, J.H.J, Fils-Villetard, A., Guillou, A.: Statistics of extremes under random censoring. Bernoulli 14(1), 207–227 (2008) Einmahl, J.H.J, de Haan, L., Zhou, C.: Statistics of Heteroscedastic Extremes (2014). doi:10.1111/rssb.12099 Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928) Fraga Alves, M.I., Gomes, M.I., de Haan, L., Neves, C.: A note on second order conditions in extreme value theory: linking general and heavy tail conditions. REVSTAT - Stat. J. 5(3), 285–304 (2007) Gardes, L., Girard, S.: A moving window approach for nonparametric estimation of the conditional tail index. J. Multivar. Anal. 99, 2368–2388 (2008) Gardes, L., Girard, S.: Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels. Extremes 13(2), 177–204 (2010) Gardes, L., Girard, S.: Functional kernel estimators of large conditional quantiles. Electron. J. Stat. 6, 1715–1744 (2012) Gardes, L., Stupfler, G.: Estimation of the conditional tail index using a smoothed local Hill estimator. Extremes 17(1), 45–75 (2014) Gardes, L., Stupfler, G.: Estimating extreme quantiles under random truncation. TEST (2014). doi:10.1007/s11749-014-0403-5 Gasser, T., Müller, H.G.: Kernel estimation of regression functions. In: Gasser, T., Rosenblatt, M. (eds.) Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics 757, pp 23–68. Springer, Heidelberg (1979) Georgiev, A.A.: Consistent nonparametric multiple regression: the fixed design case. J. Multivar. Anal. 25, 100–110 (1988) Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943) Goegebeur, Y., Guillou, A., Osmann, M.: A local moment type estimator for the extreme value index in regression with random covariates. Can. J. Stat. 42 (3), 487–507 (2014) Goegebeur, Y., Guillou, A., Verster, A.: Robust and asymptotically unbiased estimation of extreme quantiles for heavy-tailed distributions. Stat. Probab. Lett. 87, 108–114 (2014) Gomes, M.I., Guillou, A.: Extreme value theory and statistics of univariate extremes: A review. Int. Stat. Rev. (2014). doi:10.1111/insr.12058 de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer (2006) Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975) Kaplan, E.L., Meier, P.: Non-parametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958) Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964) Parzen, E.: On the estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962) Pickands, III J.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975) Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion). Stat. Sci. 4, 367–393 (1989) Stone, C.J.: Consistent nonparametric regression. Ann. Stat. 5, 595–645 (1977) Stupfler, G.: A moment estimator for the conditional extreme value index. Electron. J. Stat. 7, 2298–2343 (2013) Tsay, R.S.: Analysis of financial time series. Wiley, New York (2002) Wand, M.P., Jones, M.C.: Kernel smoothing. Chapman and Hall, London (1995) Wang, H., Tsai, C.L.: Tail index regression. J. Am. Stat. Assoc. 104(487), 1233–1240 (2009) Watson, G.S.: Smooth regression analysis. Sankhya 26(15), 175–184 (1964)