A general asymptotic formula of the gamma function based on the Burnside's formula

Journal of Number Theory - Tập 145 - Trang 317-328 - 2014
Dawei Lu1, Jinghai Feng1, Congxu Ma1
1School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China

Tài liệu tham khảo

Abramowitz, 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 Alzer, 1997, On some inequalities for the gamma and psi functions, Math. Comp., 66, 373, 10.1090/S0025-5718-97-00807-7 Burnside, 1917, A rapidly convergent series for log⁡N!, Messenger Math., 46, 157 Gosper, 1978, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40, 10.1073/pnas.75.1.40 Lu, 2013, A generated approximation related to Gosper's formula and Ramanujan's formula, J. Math. Anal. Appl., 406, 287, 10.1016/j.jmaa.2013.04.073 Lu, 2014, A generated approximation related to Burnside's formula, J. Number Theory, 136, 414, 10.1016/j.jnt.2013.10.016 Lu, 2014, A new asymptotic expansion and some inequalities for the Gamma function, J. Number Theory, 140, 314, 10.1016/j.jnt.2014.01.025 Mortici, 2010, Very accurate estimates of the polygamma functions, Asymptot. Anal., 68, 125, 10.3233/ASY-2010-0983 Mortici, 2010, A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpathian J. Math., 26, 86 Mortici, 2010, On new sequences converging towards the Euler–Mascheroni constant, Comput. Math. Appl., 59, 2610, 10.1016/j.camwa.2010.01.029 Mortici, 2010, Product approximations via asymptotic integration, Amer. Math. Monthly, 117, 434, 10.4169/000298910x485950 Mortici, 2011, A new Stirling series as continued fraction, Numer. Algorithms, 56, 17, 10.1007/s11075-010-9370-4 Mortici, 2013, A continued fraction approximation of the gamma function, J. Math. Anal. Appl., 402, 405, 10.1016/j.jmaa.2012.11.023 Nemes, 2010, New asymptotic expansion for the Gamma function, Arch. Math., 95, 161, 10.1007/s00013-010-0146-9 Ramanujan, 1988