A general asymptotic formula of the gamma function based on the Burnside's formula
Tài liệu tham khảo
Abramowitz, 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55
Alzer, 1997, On some inequalities for the gamma and psi functions, Math. Comp., 66, 373, 10.1090/S0025-5718-97-00807-7
Burnside, 1917, A rapidly convergent series for logN!, Messenger Math., 46, 157
Gosper, 1978, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40, 10.1073/pnas.75.1.40
Lu, 2013, A generated approximation related to Gosper's formula and Ramanujan's formula, J. Math. Anal. Appl., 406, 287, 10.1016/j.jmaa.2013.04.073
Lu, 2014, A generated approximation related to Burnside's formula, J. Number Theory, 136, 414, 10.1016/j.jnt.2013.10.016
Lu, 2014, A new asymptotic expansion and some inequalities for the Gamma function, J. Number Theory, 140, 314, 10.1016/j.jnt.2014.01.025
Mortici, 2010, Very accurate estimates of the polygamma functions, Asymptot. Anal., 68, 125, 10.3233/ASY-2010-0983
Mortici, 2010, A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpathian J. Math., 26, 86
Mortici, 2010, On new sequences converging towards the Euler–Mascheroni constant, Comput. Math. Appl., 59, 2610, 10.1016/j.camwa.2010.01.029
Mortici, 2010, Product approximations via asymptotic integration, Amer. Math. Monthly, 117, 434, 10.4169/000298910x485950
Mortici, 2011, A new Stirling series as continued fraction, Numer. Algorithms, 56, 17, 10.1007/s11075-010-9370-4
Mortici, 2013, A continued fraction approximation of the gamma function, J. Math. Anal. Appl., 402, 405, 10.1016/j.jmaa.2012.11.023
Nemes, 2010, New asymptotic expansion for the Gamma function, Arch. Math., 95, 161, 10.1007/s00013-010-0146-9
Ramanujan, 1988