A general approach for studying duality in multiobjective optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boţ RI, Grad S-M, Wanka G (2004) A new constraint qualification and conjugate duality for composed convex optimization problems. Preprint 2004-15, Fakultät für Mathematik, Technische Universität Chemnitz. J Optim Theory Appl (preprint)
Boţ RI, Grad S-M, Wanka G (2006) Fenchel–Lagrange versus geometric programming in convex optimization. J Optim Theory Appl 129
Boţ RI, Wanka G (2004a) An analysis of some dual problems in multiobjective optimization I. Optimization 53(3):281–300
Boţ RI, Wanka G (2004b) An analysis of some dual problems in multiobjective optimization II. Optimization 53(3):301–324
Boţ RI, Wanka G (2006) Duality for multiobjective optimization problems with convex objective functions and D.C. constraints. J Math Anal Appl 315(2):526–543
Carrizosa E, Fliege J (2002) Generalized goal programming: polynomial methods and applications. Math Program 93(2):281–303
Chankong V, Haimes YY (1983) Optimization-based methods for multiobjective decision-making: an overview. Large Scale Syst 5(1):1–33
Fliege J (2001) Approximation techniques for the set of efficient points. Habilitationsschrift, Fachbereich Mathematik, Universität Dortmund
Fliege J, Heseler A (2002) Constructing approximations to the efficient set of convex quadratic multiobjective problems. Ergebnisberichte Angewandte Mathematik, vol. 211, Fachbereich Mathematik, Universität Dortmund
Frenk JBG, Kassay G (1999) On classes of generalized convex functions, Gordan-Farkas type theorems and Lagrangian duality. J Optim Theory Appl 102(2):315–343
Gerstewitz C (1983) Nichtkonvexe Dualität in der Vektoroptimierung. Wissenschaftliche Zeitschrift den Technischen Hochschule “Carl Schorlemmer” Leuna-Merseburg 25(3):357–364
Gerstewitz C, Iwanow E (1985) Dualität für nichtkonvexe Vektoroptimierungsprobleme. In: Workshop on vector optimization (Plauen, 1984), Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 31(2):61–81
Gerth C, Weidner P (1990) Nonconvex separation theorems and some applications in vector optimization. J Optim Theory and Appl 67(2):297–320
Göpfert A, Gerth C (1986) Über die Skalarisierung und Dualisierung von Vektoroptimierungsproblemen. Z Anal Anwendungen 5(4):377–384
Helbig S (1989) A scalarization for vector optimization problems in locally convex spaces. In: Proceedings of the annual scientific meeting of the GAMM (Vienna, 1988), Z Angew Math Mech 69(4):T89–T91
Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms, I and II. Springer, Berlin Heidelberg New York
Jahn J (2004) Vector optimization-theory, applications, and extensions. Springer, Berlin Heidelberg New York
Kaliszewski I (1986) Norm scalarization and proper efficiency in vector optimization. Found Control Eng 11(3):117–131
Khánh PQ (1993) Optimality conditions via norm scalarization in vector optimization. SIAM J Control Optim 31(3):646–658
Luc DT (1989) Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin Heidelberg New York
Luc DT, Phong TQ, Volle M (2005) Scalarizing functions for generating the weakly efficient solution set in convex multiobjective problems. SIAM J Optim 15(4):987–1001
Mbunga P (2003) Structural stability of vector optimization problems. Optimization and optimal control (Ulaanbaatar, 2002), Series on Computers and Operations Research, vol. 1. World Scientific Publishing, River Edge, pp 175–183
Miglierina E, Molho E (2002) Scalarization and stability in vector optimization. J Optim Theory and Appl 114(3):657–670
Mitani K, Nakayama HA (1997) A multiobjective diet planning support system using the satisficing trade-off method. J Multi-Criteria Decis Anal 6(3):131–139
Rubinov AM, Gasimov RN (2004) Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J Global Optim 29(4): 455–477
Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Mathematics in Science and Engineering, vol 176. Academic Press, Orlando
Schandl B, Klamroth K, Wiecek MM (2002) Norm-based approximation in multicriteria programming. Global optimization, control, and games IV, Comput Math Appl 44(7):925–942
Tammer C (1996) A variational principle and applications for vectorial control approximation problems. Preprint 96-09, Reports on Optimization and Stochastics, Martin-Luther-Universität Halle-Wittenberg
Tammer C, Göpfert A (2002) Theory of vector optimization. In: Ehrgott M, Gandibleux X (eds) Multiple criteria optimization: state of the art annotated bibliographic surveys. International Series in Operations Research and Management Science, vol. 52. Kluwer, Boston, pp 1–70
Tammer C, Winkler K (2003) A new scalarization approach and applications in multicriteria D.C. optimization. J Nonlinear Convex Anal 4(3):365–380
Tanino T, Kuk H (2002) Nonlinear multiobjective programming. In: Ehrgott M, Gandibleux X (eds) Multiple criteria optimization: state of the art annotated bibliographic surveys. International Series in Operations Research and Management Science, vol. 52. Kluwer, Boston, pp 71–128
Wanka G, Boţ RI (2001) A new duality approach for multiobjective convex optimization problems. J Nonlinear Convex Anal 3(1):41–57
Wanka G, Boţ RI (2000) Multiobjective duality for convex-linear problems II. Math Methods Oper Res 53(3):419–433
Wanka G, Boţ RI, Grad S-M (2003) Multiobjective duality for convex semidefinite programming problems. Z Anal Anwendungen (J Anal Appl) 22(3):711–728
Wanka G, Boţ RI, Vargyas ET (2006) Duality for location problems with unbounded unit balls. Eur J Oper Res DOI 10.1016/j.ejor.2005.09.048
Weidner P (1990) An approach to different scalarizations in vector optimization. Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 36(3):103–110
Weidner P (1994) The influence of proper efficiency on optimal solutions of scalarizing problems in multicriteria optimization. OR Spektrum 16(4):255–260
Wierzbicki AP (1977) Basic properties of scalarizing functionals for multiobjective optimization. Math Operationsforsch Statist Ser Optimization 8(1):55–60
Winkler K (2003) Skalarisierung mehrkriterieller Optimierungsprobleme mittels schiefer Normen. In: Habenicht W, Scheubrein B, Scheubein R (eds) Multi-Criteria- und Fuzzy-Systeme in Theorie und Praxis. Deutscher Universitäts-Verlag, Wiesbaden, pp 173–190