A fuzzy coding approach for the analysis of long‐term ecological data
Tóm tắt
We present an unconventional procedure (fuzzy coding) to structure biological and environmental information, which uses positive scores to describe the affinity of a species for different modalities (i.e. categories) of a given variable. Fuzzy coding is essential for the synthesis of long‐term ecological data because it enables analysis of diverse kinds of biological information derived from a variety of sources (e.g. samples, literature). A fuzzy coded table can be processed by correspondence analysis. An example using aquatic beetles illustrates the properties of such a fuzzy correspondence analysis. Fuzzy coded tables were used in all articles of this issue to examine relationships between spatial‐temporal habitat variability and species traits, which were obtained from a long‐term study of the Upper Rhône River, France. Fuzzy correspondence analysis can be programmed with the equations given in this paper or can be performed using ADE (Environmental Data Analysis) software that has been adapted to analyse such long‐term ecological data. On Macintosh AppleTM computers, ADE performs simple linear ordination, more recently developed methods (e.g. principal component analysis with respect to instrumental variables, canonical correspondence analysis, co‐inertia analysis, local and spatial analyses), and provides a graphical display of results of these and other types of analysis (e.g. biplot, mapping, modelling curves). ADE consists of a program library that exploits the potential of the HyperCardTM interface. ADE in an open system, which offers the user a variety of facilities to create a specific sequence of programs. The mathematical background of ADE is supported by the algebraic model known as ‘duality diagram’.
Từ khóa
Tài liệu tham khảo
Aivazian S., 1991, Symbolic‐Numeric Data Analysis and Learning, 91
Auda Y., 1983, Thèse de 3ème cycle, 127
Bertin J., 1967, Les diagrammes, les réseaux, les cartes, 431
Cailliez F., 1976, Introduction à l'analyse des données, 616
Carrel G., 1986, Approche graphique de l'analyse en composantes principales normée: utilisation en hydrobiologie, Acta Oecologica, Oecologia Generalis, 7, 189
Chessel D., 1992, ADE Software. Multivariate Analyses and Graphical Display for Environmental Data (version 3.4), 523
Chevenet F., 1993, SLOT: a cooperative problem‐solving environment in exploratory data analysis, Proceedings of the International Statistical Institute, 49, 255
Daniels J., 1988, Applied HyperCardTM. Developing and Marketing Superior StackwareTM, 462
Diday E., 1982, Eléments d'analyse de données, 462
Dolédec S., 1991, Recent developments in linear ordination methods for environmental sciences, Advances in Ecology, 1, 133
Escoufier Y., 1982, L'analyse des tableaux de contingence simples et multiples, Metron, 40, 53
Escoufier Y., 1985, L'analyse des correspondances: ses propriétés et ses extensions, Proceedings of the International Statistical Institute, 45, 1
Goodman D., 1988, Danny Goodman's HyperCardTM Developer's Guide, 644
Hill M.O., 1974, Correspondence analysis: A neglected multivariate method, Journal of the Royal Statistical Society (London), 23, 340
Illies J., 1963, Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistique, Mitteilungen der internationalen Vereinigung für theoretische und angewandte Limnologie, 12, 1
Legendre L., 1983, Ecologie numérique, 247
Ludwig J. A., 1988, Statistical Ecology, 337
Morgenthaler S., 1989, Data Analysis, Learning Symbolic and Numeric Knowledge, 1
Nishisato S., 1980, Analysis of Categorical Data: Dual Scaling and its Applications, 276, 10.3138/9781487577995
Rao C. R., 1964, The use and interpretation of principal component analysis in applied research, Sankhya, 26, 329
Sabatier R., 1989, Multiway Data Analysis, 341
Rijckevorsel J., 1987, The Application of Fuzzy Coding and Horseshoes in Multiple Correspondence Analysis, 272
Winkler D., 1990, Hyper Talk 2.0: The Book, 958