A fuzzy coding approach for the analysis of long‐term ecological data

Freshwater Biology - Tập 31 Số 3 - Trang 295-309 - 1994
François Chevenet1, SYLVAIN DOLÉADEC1, Daniel Chessel2
1URA CNRS 243 ‘Biométrie, Génétique et Biologie des Populations’, Université Lyon I, 69622 Villeurbanne Cedex, France
2URA CNRS 1451 “Ecologie des Eaux Douces et des Grands Fleuves”, Université Lyon I, 69622, Villeurbanne Cedex, France

Tóm tắt

SUMMARY

We present an unconventional procedure (fuzzy coding) to structure biological and environmental information, which uses positive scores to describe the affinity of a species for different modalities (i.e. categories) of a given variable. Fuzzy coding is essential for the synthesis of long‐term ecological data because it enables analysis of diverse kinds of biological information derived from a variety of sources (e.g. samples, literature).

A fuzzy coded table can be processed by correspondence analysis. An example using aquatic beetles illustrates the properties of such a fuzzy correspondence analysis. Fuzzy coded tables were used in all articles of this issue to examine relationships between spatial‐temporal habitat variability and species traits, which were obtained from a long‐term study of the Upper Rhône River, France.

Fuzzy correspondence analysis can be programmed with the equations given in this paper or can be performed using ADE (Environmental Data Analysis) software that has been adapted to analyse such long‐term ecological data. On Macintosh AppleTM computers, ADE performs simple linear ordination, more recently developed methods (e.g. principal component analysis with respect to instrumental variables, canonical correspondence analysis, co‐inertia analysis, local and spatial analyses), and provides a graphical display of results of these and other types of analysis (e.g. biplot, mapping, modelling curves).

ADE consists of a program library that exploits the potential of the HyperCardTM interface. ADE in an open system, which offers the user a variety of facilities to create a specific sequence of programs. The mathematical background of ADE is supported by the algebraic model known as ‘duality diagram’.

Từ khóa


Tài liệu tham khảo

Aivazian S., 1991, Symbolic‐Numeric Data Analysis and Learning, 91

Auda Y., 1983, Thèse de 3ème cycle, 127

Bertin J., 1967, Les diagrammes, les réseaux, les cartes, 431

10.1002/rrr.3450070205

Cailliez F., 1976, Introduction à l'analyse des données, 616

Carrel G., 1986, Approche graphique de l'analyse en composantes principales normée: utilisation en hydrobiologie, Acta Oecologica, Oecologia Generalis, 7, 189

Chessel D., 1992, ADE Software. Multivariate Analyses and Graphical Display for Environmental Data (version 3.4), 523

Chevenet F., 1993, SLOT: a cooperative problem‐solving environment in exploratory data analysis, Proceedings of the International Statistical Institute, 49, 255

Daniels J., 1988, Applied HyperCardTM. Developing and Marketing Superior StackwareTM, 462

Diday E., 1982, Eléments d'analyse de données, 462

Dolédec S., 1991, Recent developments in linear ordination methods for environmental sciences, Advances in Ecology, 1, 133

10.1111/j.1365-2427.1994.tb01741.x

Escoufier Y., 1982, L'analyse des tableaux de contingence simples et multiples, Metron, 40, 53

Escoufier Y., 1985, L'analyse des correspondances: ses propriétés et ses extensions, Proceedings of the International Statistical Institute, 45, 1

10.1007/978-3-642-70880-0_3

10.1007/BF00122020

Goodman D., 1988, Danny Goodman's HyperCardTM Developer's Guide, 644

10.2307/2258931

Hill M.O., 1974, Correspondence analysis: A neglected multivariate method, Journal of the Royal Statistical Society (London), 23, 340

10.2307/1219449

10.1037/h0071325

10.1002/iroh.19610460205

Illies J., 1963, Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistique, Mitteilungen der internationalen Vereinigung für theoretische und angewandte Limnologie, 12, 1

Legendre L., 1983, Ecologie numérique, 247

Ludwig J. A., 1988, Statistical Ecology, 337

Morgenthaler S., 1989, Data Analysis, Learning Symbolic and Numeric Knowledge, 1

Nishisato S., 1980, Analysis of Categorical Data: Dual Scaling and its Applications, 276, 10.3138/9781487577995

10.2307/2259029

10.1080/14786440109462720

10.1007/BF02293704

Rao C. R., 1964, The use and interpretation of principal component analysis in applied research, Sankhya, 26, 329

Sabatier R., 1989, Multiway Data Analysis, 341

10.1111/j.1365-2427.1994.tb01739.x

10.1007/BF02294151

10.1007/BF00038688

10.2307/1940773

10.1007/978-94-011-3198-8_6

10.1111/j.1365-2427.1994.tb01740.x

Rijckevorsel J., 1987, The Application of Fuzzy Coding and Horseshoes in Multiple Correspondence Analysis, 272

Winkler D., 1990, Hyper Talk 2.0: The Book, 958