A fuzzy adaptive metaheuristic algorithm for identifying sustainable, economical, and earthquake-resistant reinforced concrete cantilever retaining walls

Journal of Computational Science - Tập 70 - Trang 101978 - 2023
Farshid Keivanian1, Raymond Chiong1, Ali R. Kashani2, Amir H. Gandomi3,4
1School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
2Department of Civil Engineering, University of Memphis, Memphis, TN 38152, USA
3Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
4University Research and Innovation Center (EKIK), Óbuda University, 1034 Budapest, Hungary

Tài liệu tham khảo

Gandomi, 2017, Optimization of retaining wall design using evolutionary algorithms, Struct. Multidiscip. Optim., 55, 809, 10.1007/s00158-016-1521-3 Mergos, 2020, Optimum design of reinforced concrete retaining walls with the flower pollination algorithm, Struct. Multidiscip. Optim., 61, 575, 10.1007/s00158-019-02380-x Long, 2019, Solving high-dimensional global optimization problems using an improved sine cosine algorithm, Expert Syst. Appl., 123, 108, 10.1016/j.eswa.2018.11.032 Sarıbaş, 1996, Optimization and sensitivity of retaining structures, J. Geotech. Eng., 122, 649, 10.1061/(ASCE)0733-9410(1996)122:8(649) Basudhar, 2008, Cost optimization of reinforced earth walls, Geotech. Geol. Eng., 26, 1, 10.1007/s10706-007-9143-6 Sarma, 1998, Cost optimization of concrete structures, J. Struct. Eng., 124, 570, 10.1061/(ASCE)0733-9445(1998)124:5(570) Wang, 2008, Economic design optimization of foundations, J. Geotech. Geoenviron. Eng., 134, 1097, 10.1061/(ASCE)1090-0241(2008)134:8(1097) Hernández, 2002, Vol. 3 Fletcher, 2013 Mourelatos, Z.P. and J. Liang. An efficient unified approach for reliability and robustness in engineering design. in NSF Workshop on Reliable Engineering Computing. 2004. Sivakumar Babu, 2008, Optimum design of cantilever retaining walls using target reliability approach, Int. J. Geomech., 8, 240, 10.1061/(ASCE)1532-3641(2008)8:4(240) Weise, 2009, Why is optimization difficult?, 1 Kumar, 2018, Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology, Future Gener. Comput. Syst., 81, 252, 10.1016/j.future.2017.10.052 Eberhart, 1995, A new optimizer using particle swarm theory Yang, 2010 Dorigo, 2006, Ant colony optimization, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.329691 Atashpaz-Gargari, 2007, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition Yang, 2009, Cuckoo search via Lévy flights Yang, 2008, Firefly algorithm, Nat. Inspired Metaheuristic Algorithms, 20, 79 Hasançebi, 2015, Adaptive dimensional search: a new metaheuristic algorithm for discrete truss sizing optimization, Comput. Struct., 154, 1, 10.1016/j.compstruc.2015.03.014 Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007 Rechenberg, 1965, 1122 Holland, 1975, 100 Storn, 1996, On the usage of differential evolution for function optimization Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput. Struct., 112, 283, 10.1016/j.compstruc.2012.09.003 Civicioglu, 2013, Backtracking search optimization algorithm for numerical optimization problems, Appl. Math. Comput., 219, 8121, 10.1016/j.amc.2013.02.017 Erol, 2006, A new optimization method: big bang–big crunch, Adv. Eng. Softw., 37, 106, 10.1016/j.advengsoft.2005.04.005 Simon, 2008, Biogeography-based optimization, IEEE Trans. Evolut. Comput., 12, 702, 10.1109/TEVC.2008.919004 Yang, 2010, Firefly algorithm, Levy flights and global optimization, 209 Gandomi, 2017, Retaining wall optimization using interior search algorithm with different bound constraint handling, Int. J. Numer. Anal. Methods Geomech., 41, 1304, 10.1002/nag.2678 Eberhart, 2001 Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201 Kirkpatrick, 1983, Optimization by simulated annealing, science, 220, 671, 10.1126/science.220.4598.671 Azad, 2019, Monitored convergence curve: a new framework for metaheuristic structural optimization algorithms, Struct. Multidiscip. Optim., 60, 481, 10.1007/s00158-019-02219-5 Kaveh, 2011, Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls, Int. J. Civ. Eng., 9, 1 Mahdavi, 2007, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188, 1567, 10.1016/j.amc.2006.11.033 Ceranic, 2001, An application of simulated annealing to the optimum design of reinforced concrete retaining structures, Comput. Struct., 79, 1569, 10.1016/S0045-7949(01)00037-2 Aydogdu, 2017, Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights, Eng. Optim., 49, 381, 10.1080/0305215X.2016.1191837 Kashani, 2020, Metaheuristics in civil engineering: A review, Techno Press Services, 1, 19 Kashani, 2020, Particle swarm optimization variants for solving geotechnical problems: review and comparative analysis, Arch. Comput. Methods Eng., 1 Kalemci, 2020, Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm Committee, 2005 STANDARD, B., Eurocode 7: Geotechnical design—. 2004, 2004. Keivanian, 2021, A novel hybrid fuzzy–metaheuristic approach for multimodal single and multi-objective optimization problems, Expert Syst. Appl. Al Atik, 2010, Seismic earth pressures on cantilever retaining structures, J. Geotech. Geoenviron. Eng., 136, 1324, 10.1061/(ASCE)GT.1943-5606.0000351 Candia, 2016, Seismic response of retaining walls with cohesive backfill: Centrifuge model studies, Soil Dyn. Earthq. Eng., 90, 411, 10.1016/j.soildyn.2016.09.013 Geraili Mikola, 2016, Seismic earth pressures on retaining structures and basement walls in cohesionless soils, J. Geotech. Geoenviron. Eng., 142, 04016047, 10.1061/(ASCE)GT.1943-5606.0001507 Kaveh, 2011 Kaveh, 2013, Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm, Struct. Eng. Mech., 47, 227, 10.12989/sem.2013.47.2.227 Gandomi, 2018, Automating pseudo-static analysis of concrete cantilever retaining wall using evolutionary algorithms, Measurement, 115, 104, 10.1016/j.measurement.2017.10.032 Mergos, 2018, Contribution to sustainable seismic design of reinforced concrete members through embodied CO2 emissions optimization, Struct. Concr., 19, 454, 10.1002/suco.201700064 Georgopoulos, 2014 Olivier, J.G., J.A. Peters, and G. Janssens-Maenhout, Trends in global CO2 emissions 2012 report. 2012. Hansbo, 1994 Camp, 2012, Design of retaining walls using big bang–big crunch optimization, J. Struct. Eng., 138, 438, 10.1061/(ASCE)ST.1943-541X.0000461 Okabe, 1924, General theory on earth pressure and seismic stability of retaining wall and dam, Proc. Civ. Engrg. Soc., Jpn., 10, 1277 Mononobe, 1929, On the determination of earth pressures during earthquakes, Proceedings of the World Engineering Congress Kramer, 1996 Das, 2015 Coulomb, C.A., Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a l′architecture (essay on maximums and minimums of rules to some static problems relating to architecture). 1973. Seed, 1970, Design of earth retaining structures for dynamic loads, in ASCE Specialty Conf.-Lateral Stress in the Ground and Design of, Earth Retaining Structures AASHTO, 2002 Technology, C.Io.C., BEDEC PR/PCT ITEC materials database, T. CIoC, Editor. 2009: Barcelona. Yepes, 2012, CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy, J. Comput. Civ. Eng., 26, 378, 10.1061/(ASCE)CP.1943-5487.0000140 Zadeh, 1978, Fuzzy sets as a basis for a theory of possibility, Fuzzy sets Syst., 1, 3, 10.1016/0165-0114(78)90029-5 Zimmermann, 2011 Antão, 2017 Zadeh, 1975, The concept of a linguistic variable and its application to approximate reasoning—I, Inf. Sci., 8, 199, 10.1016/0020-0255(75)90036-5 Mamdani, 1974, Application of fuzzy algorithms for control of simple dynamic plant Kerr-Wilson, 2020, Generating a hierarchical fuzzy rule-based model, Fuzzy Sets Syst., 381, 124, 10.1016/j.fss.2019.07.013 Drobics, 2008, Optimization of fuzzy rule sets using a bacterial evolutionary algorithm, Mathw. Soft Comput., 15, 21 Keivanian, 2014, Optimum layout of multiplexer with minimal average power based on IWO, fuzzy-IWO, GA, and fuzzy GA, ACSIJ Adv. Comput. Sci. Int J., 3, 132 Keivanian, 2016, 5, 1 Keivanian, 2014, Minimization of average power consumption in 3 stage CMOS ring oscillator based on MSFLA, fuzzy-MSFLA, GA, and fuzzy-GA, Int. J. Comput. Appl., 104, 16 Keivanian, 2019 Keivanian, 2015 Keivanian, 2014, Optimization of JK Flip Flop Layout with minimal average power of consumption based on ACOR, fuzzy-ACOR, GA, and fuzzy-GA, J. Math. Comput. Sci., 14, 1, 10.22436/jmcs.014.01.01 Santiago, 2019, A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME, Inf. Sci., 471, 233, 10.1016/j.ins.2018.09.005 Kazemzadeh Azad, 2018, Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses, Eng. Optim., 50, 89, 10.1080/0305215X.2017.1284833 Al Khaled, 2015, Fuzzy adaptive imperialist competitive algorithm for global optimization, Neural Comput. Appl., 26, 813, 10.1007/s00521-014-1752-4 Azad, 2013, Upper bound strategy for metaheuristic based design optimization of steel frames, Adv. Eng. Softw., 57, 19, 10.1016/j.advengsoft.2012.11.016 Hasançebi, 2011, A Reformul. Ant. Colony Optim. Algorithm Large Scale Struct. Optim. Hancer, 2019, Differential evolution for feature selection: a fuzzy wrapper–filter approach, Soft Comput., 23, 5233, 10.1007/s00500-018-3545-7 Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evolut. Comput., 10, 281, 10.1109/TEVC.2005.857610 Hadi, 2019, LSHADE-SPA memetic framework for solving large-scale optimization problems, Complex Intell. Syst., 5, 25, 10.1007/s40747-018-0086-8 Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328 Masoudi, 2017, Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs, Comput. Stat. Data Anal., 113, 330, 10.1016/j.csda.2016.06.014 Ji, 2016, An efficient imperialist competitive algorithm for solving the QFD decision problem, Math. Probl. Eng., 2016, 10.1155/2016/2601561 Yepes, 2008, A parametric study of optimum earth-retaining walls by simulated annealing, Eng. Struct., 30, 821, 10.1016/j.engstruct.2007.05.023 Medina, 2001, Estimation of incident and reflected waves using simulated annealing, J. Waterw. Port. Coast. Ocean Eng., 127, 213, 10.1061/(ASCE)0733-950X(2001)127:4(213) Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evolut. Comput., 1, 3, 10.1016/j.swevo.2011.02.002