A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism

Journal of Experimental Medicine - Tập 204 Số 8 - Trang 1757-1764 - 2007
Janine L. Coombes1, Karima R.R. Siddiqui1, Carolina V. Arancibia-Cárcamo1, Jason A. Hall2, Cheng‐Ming Sun2, Yasmine Belkaid2, Fiona Powrie1
1Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
22Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892

Tóm tắt

Foxp3+ regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3+ T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-β can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103+ mesenteric lymph node dendritic cells (DCs) that induce the devel opment of Foxp3+ T reg cells. Importantly, promotion of T reg cell responses by CD103+ DCs is dependent on TGF-β and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine.

Từ khóa


Tài liệu tham khảo

2005, Immunol. Rev., 204, 184, 10.1111/j.0105-2896.2005.00250.x

2005, Nat. Immunol., 6, 1219, 10.1038/ni1265

2006, J. Immunol., 177, 7634, 10.4049/jimmunol.177.11.7634

2001, J. Immunol., 167, 188, 10.4049/jimmunol.167.1.188

2003, J. Exp. Med., 198, 1875, 10.1084/jem.20030152

2004, J. Immunol., 172, 6003, 10.4049/jimmunol.172.10.6003

2004, J. Immunol., 172, 5149, 10.4049/jimmunol.172.9.5149

2004, Am. J. Transplant., 4, 1614, 10.1111/j.1600-6143.2004.00566.x

2005, J. Immunol., 174, 1446, 10.4049/jimmunol.174.3.1446

2005, Proc. Natl. Acad. Sci. USA., 102, 5126, 10.1073/pnas.0501701102

2005, Eur. J. Immunol., 35, 1831, 10.1002/eji.200425882

2005, Semin. Immunol., 17, 284, 10.1016/j.smim.2005.05.010

2001, J. Immunol., 167, 4245, 10.4049/jimmunol.167.8.4245

2003, Immunology., 108, 481, 10.1046/j.1365-2567.2003.01606.x

2006, J. Exp. Med., 203, 519, 10.1084/jem.20052016

2005, J. Exp. Med., 202, 1051, 10.1084/jem.20040662

1993, Eur. J. Immunol., 23, 3365, 10.1002/eji.1830231246

1992, J. Exp. Med., 175, 1457, 10.1084/jem.175.6.1457

2005, J. Exp. Med., 202, 1063, 10.1084/jem.20051100

2005, J. Exp. Med., 201, 1061, 10.1084/jem.20042276

2003, J. Cell Sci., 116, 217, 10.1242/jcs.00229

2004, Immunity., 21, 527, 10.1016/j.immuni.2004.08.011

2006, Proc. Natl. Acad. Sci. USA., 103, 6659, 10.1073/pnas.0509484103

2005, Nat. Immunol., 6, 507, 10.1038/ni1192

2006, Nature., 441, 235, 10.1038/nature04753

1993, Int. Immunol., 5, 1461, 10.1093/intimm/5.11.1461

1998, J. Exp. Med., 188, 287, 10.1084/jem.188.2.287

2001, Nucleic Acids Res., 29, e45, 10.1093/nar/29.9.e45