A framework for simulating ultrasound imaging based on first order nonlinear pressure–velocity relations

Ultrasonics - Tập 69 - Trang 152-165 - 2016
Yigang Du1,2,3, Rui Fan2, Yong Li2, Siping Chen1, Jørgen Arendt Jensen4
1National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, CN-518060 Shenzhen, China
2Shenzhen Mindray Bio-Medical Electronics Co. Ltd., CN-518057 Shenzhen, China
3College of Information Engineering, Shenzhen University, CN-518060 Shenzhen, China
4Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Tài liệu tham khảo

Jensen, 1992, Calculation of pressure fields from arbitrary shaped, apodized, and excited ultrasound transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 262, 10.1109/58.139123 Jensen, 1996, Field: a program for simulating ultrasound systems, 351 Orofino, 1993, Efficient angular spectrum decomposition of acoustic sources-Part I: Theory, IEEE Trans. Ultrason. Ferroelectr. Freq. Control Soc., 40, 238, 10.1109/58.216837 Zeng, 2009, Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach, J. Acoust. Soc. Am., 125, 2967, 10.1121/1.3097499 Du, 2013, Investigation of an angular spectrum approach for pulsed ultrasound fields, Ultrasonics, 53, 1185, 10.1016/j.ultras.2013.02.011 Xiang, 2006, Angular spectrum decomposition analysis of second harmonic ultrasound propagation and its relation to tissue harmonic imaging, vol. UmassD-NDT, 11 Jing, 2011, Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation, J. Acoust. Soc. Am., 129, 32, 10.1121/1.3504705 Du, 2013, Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach, Ultrasonics, 53, 588, 10.1016/j.ultras.2012.10.004 Berntsen, 1990, Numerical calculations of finite amplitude sound beams Lee, 1993 Lee, 1995, Time-domain modeling of pulsed finite-amplitude sound beams, J. Acoust. Soc. Am., 97, 906, 10.1121/1.412135 Zabolotskaya, 1969, Quasi-plane waves in the nonlinear acoustics of confined beams, Soviet Phys.-Acoust., 15, 35 Kuznetsov, 1971, Equations of nonlinear acoustics, Soviet Phys.-Acoust., 16, 467 Varslot, 2005, Computer simulation of forward wave propagation in soft tissue, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 1473, 10.1109/TUFFC.2005.1516019 Varslot, 2006, Forward propagation of acoustic pressure pulses in 3D soft biological tissue, Model. Identification Control, 27, 181, 10.4173/mic.2006.3.4 Westervelt, 1963, Parametric acoustic array, J. Acoust. Soc. Am., 35, 535, 10.1121/1.1918525 Remenieras, 2000, Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams, Ultrasonics, 38, 305, 10.1016/S0041-624X(99)00112-2 Jing, 2007, Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media, J. Acoust. Soc. Am., 122, 1352, 10.1121/1.2767420 Varray, 2011, Fundamental and second harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1366, 10.1109/TUFFC.2011.1956 Varray, 2013, CREANUIS: a non-linear radiofrequency ultrasound image simulator, Ultrasound Med. Biol., 39, 1915, 10.1016/j.ultrasmedbio.2013.04.005 Varslot, 2007, Aberration in nonlinear acoustic wave propagation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 470, 10.1109/TUFFC.2007.271 Jensen, 1991, A model for the propagation and scattering of ultrasound in tissue, J. Acoust. Soc. Am., 89, 182, 10.1121/1.400497 Wojcik, 1997, Pseudospectral methods for large-scale bioacoustic models, 1501 Wojcik, 1998, A study of second harmonic generation by focused medical transducer pulses, 1583 Pinton, 2009, A heterogeneous nonlinear attenuating full-wave model of ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 474, 10.1109/TUFFC.2009.1066 Treeby, 2012, Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method, J. Acoust. Soc. Am., 131, 4324, 10.1121/1.4712021 Treeby, 2010, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15, 10.1117/1.3360308 Jing, 2012, A k-space method for moderately nonlinear wave propagation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 1664, 10.1109/TUFFC.2012.2372 Mast, 2001, A k-space method for large-scale models of wave propagation in tissue, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, 341, 10.1109/58.911717 Tabei, 2002, A k-space method for coupled first-order acoustic propagation equations, J. Acoust. Soc. Am., 111, 53, 10.1121/1.1421344 Ghrist, 2000, Staggered time integrators for wave equations, SIAM J. Numer. Anal., 38, 718, 10.1137/S0036142999351777 Kinsler, 2000 Du, 2008, Feasibility of non-linear simulation for Field II using an angular spectrum approach, 1314 Berenger, 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 113, 185, 10.1006/jcph.1994.1159 Yuan, 1997, Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 816, 10.1109/58.655197 Du, 2011 Courant, 1967, On the partial difference equations of mathematical physics, IBM J. Res. Develop., 215, 10.1147/rd.112.0215 Jensen, 2010 Kaupang, 2008 Du, 2010, Simulation of second harmonic ultrasound fields, 2191 C.S. Chapman, J.C. Lazenby, Ultrasound imaging system employing phase inversion subtraction to enhance the image, Patent US5632277 A, 1996. Jensen, 2007, Medical ultrasound imaging, Prog. Biophys. Molecular Biol., 93, 153, 10.1016/j.pbiomolbio.2006.07.025 Mould, 1999, Validation of FFT-based algorithms for large-scale modeling of wave propagation in tissue, 1551 Jensen, 1993, Ultrasound fields in an attenuating medium, 943 Jing, 2011, On the use of Gegenbauer reconstructions for shock wave propagation modeling, J. Acoust. Soc. Am., 130, 1115, 10.1121/1.3621485