A framework for processing large scale geospatial and remote sensing data in MapReduce environment
Tài liệu tham khảo
Agrawal D, Das S, El Abbadi A. Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th international conference on extending database technology (EDBT/ICDT). New York, NY, USA: ACM. ISBN 978-1-4503-0528-0; 2011. p. 530–3.
Dean, 2008, MapReduce, Commun ACM, 51, 107, 10.1145/1327452.1327492
Bhandarkar M. MapReduce programming with Apache Hadoop. In: IEEE international symposium on parallel distributed processing (IPDPS); 2010. p. 1.
Che D, Safran M, Peng Z. From big data to big data mining: challenges, issues, and opportunities. In: Database systems for advanced applications, Lecture notes in computer science, vol. 7827. Berlin, Heidelberg: Springer. ISBN 978-3-642-40269-2; 2013. p. 1–15.
Franklin M. The berkeley data analytics stack: present and future. In: IEEE international conference on big data; 2013. p. 2–3.
Csornai G, Mikus G, Nádor G, Hubik I, László I, Suba Z. The first seven years of the remote sensing based ragweed monitoring and control system. In: EARSeL eProceesings. Strasbourg, France: EARSeL European Association of Remote Sensing Laboratories; 2011. p. 110–8.
László I. The integration of remote sensing and GIS data in the control of agricultural subsidies in Hungary. In: Proceedings of the 33rd symposium of EARSeL. Strasbourg, France: EARSeL European Association of Remote Sensing Laboratories; 2013. p. 589–98.
Giachetta, 2014, AEGIS – a state-of-the-art spatio-temporal framework for education and research, OSGeo J, 13, 68
Wang, 2010, A survey on sensor localization, J Control Theory Appl, 8, 2, 10.1007/s11768-010-9187-7
Zhang, 2010, Multi-source remote sensing data fusion, Int J Image Data Fusion, 1, 5, 10.1080/19479830903561035
Schmidt, 2012, Web mapping services: development and trends, 13, 10.1007/978-3-642-27485-5_2
Yang, 2010, Geospatial cyberinfrastructure, Comput Environ Urban Syst, 34, 264, 10.1016/j.compenvurbsys.2010.04.001
Hawick, 2003, Distributed frameworks and parallel algorithms for processing large-scale geographic data, Parallel Comput, 29, 1297, 10.1016/j.parco.2003.04.001
Lee, 2011, Recent developments in high performance computing for remote sensing, IEEE J Sel Top Appl Earth Observ Remote Sens, 4, 508, 10.1109/JSTARS.2011.2162643
Zhang, 2009, Developing a grid-enabled Spatial Web Portal for Internet GIServices and geospatial cyberinfrastructure, Int J Geogr Inf Sci, 23, 605, 10.1080/13658810802698571
Schaeffer, 2012, A service-oriented framework for real-time and distributed geoprocessing, 3, 10.1007/978-3-642-10595-1_1
Yang, 2011, Spatial cloud computing, Int J Digit Earth, 4, 305, 10.1080/17538947.2011.587547
Cary A, Sun Z, Hristidis V, Rishe N. Experiences on processing spatial data with MapReduce. In: Proceedings of the 21st international conference on scientific and statistical database management (SSDBM). Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-642-02278-4; 2009. p. 302–19.
Krishnan S, Baru C, Crosby C. Evaluation of MapReduce for gridding LIDAR data. In: IEEE second international conference on cloud computing technology and science (CloudCom). 2010. p. 33–40.
Witayangkurn A, Horanont T, Shibasaki R. Performance comparisons of spatial data processing techniques for a large scale mobile phone dataset. In: Proceedings of the 3rd international conference on computing for geospatial research and applications (COM.Geo). New York, NY, USA: ACM. ISBN 978-1-4503-1113-7; 2012. p. 25–30.
Eldawy, 2013, A demonstration of SpatialHadoop, Proc VLDB Endow, 6, 1230, 10.14778/2536274.2536283
Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, et al. Hadoop GIS: a high performance spatial data warehousing system over mapreduce. In: Proceedings of the VLDB Endow, vol. 6, issue no. 11; 2013. p. 1009–20.
Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, et al. Hive: a warehousing solution over a map-reduce framework. In: Proceedings of the VLDB Endow, vol. 2, issue no. 2; 2009. p. 1626–29.
Sugumaran R, Burnett J, Blinkmann A. Big 3D spatial data processing using cloud computing environment. In: Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data (BigSpatial). New York, NY, USA: ACM. ISBN 978-1-4503-1692-7; 2012. p. 20–2.
Golpayegani N, Halem M. Cloud computing for satellite data processing on high end compute clusters. In: IEEE international conference on cloud computing (CLOUD); 2009. p. 88–92.
Alonso-Calvo, 2010, On distributing load in cloud computing, Procedia Comput Sci, 1, 2669, 10.1016/j.procs.2010.04.300
Zhang C, Sterck H, Aboulnaga A, Djambazian H, Sladek R. Case study of scientific data processing on a cloud using hadoop. In: High performance computing systems and applications. ISBN 978-3-642-12658-1; 2010. p. 400–15.
Giachetta R. Advancing a geospatial framework to the MapReduce model. In: Lindenbergh R, Spagnuologo M, Boehm J, editors. Proceedings of the 1st IQmulus workshop on processing large geospatial data; 2014. p. 45–52.
Giachetta R, Fekete I. A case study of advancing remotely sensed image processing. In: Ferenc R, Bánhelyi B, Gergely T, Kincses Z, editors. Proceedings of the 9th conference of PhD students in computer science (CSCS); 2014. p. 16–7.
Herring JR, editor. OpenGIS implementation standard for geographic information: simple feature access – common architecture, version 1.2.1. Open Geospatial Consortium; 2011. URL: 〈http://www.opengeospatial.org/standards/sfa〉.
Cooper P, editor. The OpenGIS abstract specification – topic 2: spatial referencing by coordinates, version 4.0. Open Geospatial Consortium; 2010.
Fowler M. Inversion of control containers and the dependency injection pattern. URL: 〈http://www.martinfowler.com/articles/injection.html〉; 2004.
Welicki L, Yoder JW, Wirfs-Brock R. The dynamic factory pattern. In: Proceedings of the 15th conference on pattern languages o f Programs (PLoP). New York, NY, USA: ACM. ISBN 978-1-60558-151-4; 2008. p. 9–15.
Bierman GM, Meijer E, Torgersen M. Lost in translation: formalizing proposed extensions to C#. In: SIGPLAN Not, vol. 42, issue no. 10; 2007. p. 479–98.
Gamma E, Helm R, Johnson R, Vlissides J. Template method. In: Design patterns: elements of reusable object-oriented software. Boston, MA, USA: Addison-Wesley. ISBN 0-201-63361-2; 1994. p. 325–30.
Madhukar, 2013, Lanczos resampling for the digital processing of remotely sensed images, vol. 258, 403
Michaelis, 2009, Evaluation and implementation of the OGC web processing service for Use in Client-Side GIS, GeoInformatica, 13, 109, 10.1007/s10707-008-0048-1
Inglada J, Christophe E. The Orfeo Toolbox remote sensing image processing software. In: Geoscience and remote sensing symposium (IGRASS), IEEE international, vol. 4; 2009. p. 733–6.
Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: IEEE 26th symposium on mass storage systems and technologies (MSST); 2010. p. 1–10.
Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. Apache hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing SOCC. New York, NY, USA: ACM; 2013. p. 5:1-16. ISBN 978-1-4503-2428-1.
Zaharia M, Chowdhury M, Franklin M.J, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud computing; 2010. p. 10–6.
Liu X, Han J, Zhong Y, Han C, He X. Implementing WebGIS on Hadoop: a case study of improving small file I/O performance on HDFS. In: IEEE international conference on cluster computing and workshops (CLUSTER). Washington, DC, USA: IEEE Computer Society; 2009. p. 1–8.
Frank, 1992, Spatial concepts, geometric data models, and geometric data structures, Comput Geosci, 18, 409, 10.1016/0098-3004(92)90070-8
Vora M. Hadoop-HBase for large-scale data. In: Proceedings of the 2011 international conference on computer science and network technology (ICCSNT), vol. 1. Washington, DC, USA: IEEE Computer Society; 2011. p. 601–5.
Dede E, Govindaraju M, Gunter D, Canon RS, Ramakrishnan L. Performance evaluation of a MongoDB and Hadoop platform for scientific data analysis. In: Proceedings of the 4th ACM workshop on scientific cloud computing (Science Cloud). New York, NY, USA: ACM. ISBN 978-1-4503-1979-9; 2013. p. 13–20.
Brakatsoulas S, Pfoser D, Theodoridis Y. Revisiting R-tree construction principles. In: Proceedings of the 6th east European conference on advances in databases and information systems (ADBIS). London, UK, UK: Springer-Verlag. ISBN 3-540-44138-7; 2002. p. 149–62.
Liao H, Han J, Fang J. Multi-dimensional index on hadoop distributed file system. In: Proceedings of the IEEE fifth international conference on networking, architecture, and storage (NAS). Washington, DC, USA: IEEE Computer Society. ISBN 978-0-7695-4134-1; 2010. p. 240–9.
Dezső B, Fekete I, Gera D, Giachetta R, László I. Object-based image analysis in remote sensing applications using various segmentation techniques. Ann Univ Sci Budap Rolando Eötvös, Sect Comput 2012;37:103–20.
Steiniger, 2013, The 2012 free and open source GIS software map – a guide to facilitate research, development, and adoption, Comput Environ Urban Syst, 39, 136, 10.1016/j.compenvurbsys.2012.10.003
Sample J, Ioup E. Logical tile schemes. In: Tile-based geospatial information systems. US: Springer. ISBN 978-1-4419-7630-7; 2010. p. 5–15.