A framework for processing large scale geospatial and remote sensing data in MapReduce environment

Computers and Graphics - Tập 49 - Trang 37-46 - 2015
Roberto Giachetta1,2
1Department of Software Technology and Methodology, Eötvös Loránd University, Budapest, Hungary
2Institute of Geodesy, Cartography and Remote Sensing, Budapest, Hungary

Tài liệu tham khảo

Agrawal D, Das S, El Abbadi A. Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th international conference on extending database technology (EDBT/ICDT). New York, NY, USA: ACM. ISBN 978-1-4503-0528-0; 2011. p. 530–3. Dean, 2008, MapReduce, Commun ACM, 51, 107, 10.1145/1327452.1327492 Bhandarkar M. MapReduce programming with Apache Hadoop. In: IEEE international symposium on parallel distributed processing (IPDPS); 2010. p. 1. Che D, Safran M, Peng Z. From big data to big data mining: challenges, issues, and opportunities. In: Database systems for advanced applications, Lecture notes in computer science, vol. 7827. Berlin, Heidelberg: Springer. ISBN 978-3-642-40269-2; 2013. p. 1–15. Franklin M. The berkeley data analytics stack: present and future. In: IEEE international conference on big data; 2013. p. 2–3. Csornai G, Mikus G, Nádor G, Hubik I, László I, Suba Z. The first seven years of the remote sensing based ragweed monitoring and control system. In: EARSeL eProceesings. Strasbourg, France: EARSeL European Association of Remote Sensing Laboratories; 2011. p. 110–8. László I. The integration of remote sensing and GIS data in the control of agricultural subsidies in Hungary. In: Proceedings of the 33rd symposium of EARSeL. Strasbourg, France: EARSeL European Association of Remote Sensing Laboratories; 2013. p. 589–98. Giachetta, 2014, AEGIS – a state-of-the-art spatio-temporal framework for education and research, OSGeo J, 13, 68 Wang, 2010, A survey on sensor localization, J Control Theory Appl, 8, 2, 10.1007/s11768-010-9187-7 Zhang, 2010, Multi-source remote sensing data fusion, Int J Image Data Fusion, 1, 5, 10.1080/19479830903561035 Schmidt, 2012, Web mapping services: development and trends, 13, 10.1007/978-3-642-27485-5_2 Yang, 2010, Geospatial cyberinfrastructure, Comput Environ Urban Syst, 34, 264, 10.1016/j.compenvurbsys.2010.04.001 Hawick, 2003, Distributed frameworks and parallel algorithms for processing large-scale geographic data, Parallel Comput, 29, 1297, 10.1016/j.parco.2003.04.001 Lee, 2011, Recent developments in high performance computing for remote sensing, IEEE J Sel Top Appl Earth Observ Remote Sens, 4, 508, 10.1109/JSTARS.2011.2162643 Zhang, 2009, Developing a grid-enabled Spatial Web Portal for Internet GIServices and geospatial cyberinfrastructure, Int J Geogr Inf Sci, 23, 605, 10.1080/13658810802698571 Schaeffer, 2012, A service-oriented framework for real-time and distributed geoprocessing, 3, 10.1007/978-3-642-10595-1_1 Yang, 2011, Spatial cloud computing, Int J Digit Earth, 4, 305, 10.1080/17538947.2011.587547 Cary A, Sun Z, Hristidis V, Rishe N. Experiences on processing spatial data with MapReduce. In: Proceedings of the 21st international conference on scientific and statistical database management (SSDBM). Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-642-02278-4; 2009. p. 302–19. Krishnan S, Baru C, Crosby C. Evaluation of MapReduce for gridding LIDAR data. In: IEEE second international conference on cloud computing technology and science (CloudCom). 2010. p. 33–40. Witayangkurn A, Horanont T, Shibasaki R. Performance comparisons of spatial data processing techniques for a large scale mobile phone dataset. In: Proceedings of the 3rd international conference on computing for geospatial research and applications (COM.Geo). New York, NY, USA: ACM. ISBN 978-1-4503-1113-7; 2012. p. 25–30. Eldawy, 2013, A demonstration of SpatialHadoop, Proc VLDB Endow, 6, 1230, 10.14778/2536274.2536283 Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, et al. Hadoop GIS: a high performance spatial data warehousing system over mapreduce. In: Proceedings of the VLDB Endow, vol. 6, issue no. 11; 2013. p. 1009–20. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, et al. Hive: a warehousing solution over a map-reduce framework. In: Proceedings of the VLDB Endow, vol. 2, issue no. 2; 2009. p. 1626–29. Sugumaran R, Burnett J, Blinkmann A. Big 3D spatial data processing using cloud computing environment. In: Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data (BigSpatial). New York, NY, USA: ACM. ISBN 978-1-4503-1692-7; 2012. p. 20–2. Golpayegani N, Halem M. Cloud computing for satellite data processing on high end compute clusters. In: IEEE international conference on cloud computing (CLOUD); 2009. p. 88–92. Alonso-Calvo, 2010, On distributing load in cloud computing, Procedia Comput Sci, 1, 2669, 10.1016/j.procs.2010.04.300 Zhang C, Sterck H, Aboulnaga A, Djambazian H, Sladek R. Case study of scientific data processing on a cloud using hadoop. In: High performance computing systems and applications. ISBN 978-3-642-12658-1; 2010. p. 400–15. Giachetta R. Advancing a geospatial framework to the MapReduce model. In: Lindenbergh R, Spagnuologo M, Boehm J, editors. Proceedings of the 1st IQmulus workshop on processing large geospatial data; 2014. p. 45–52. Giachetta R, Fekete I. A case study of advancing remotely sensed image processing. In: Ferenc R, Bánhelyi B, Gergely T, Kincses Z, editors. Proceedings of the 9th conference of PhD students in computer science (CSCS); 2014. p. 16–7. Herring JR, editor. OpenGIS implementation standard for geographic information: simple feature access – common architecture, version 1.2.1. Open Geospatial Consortium; 2011. URL: 〈http://www.opengeospatial.org/standards/sfa〉. Cooper P, editor. The OpenGIS abstract specification – topic 2: spatial referencing by coordinates, version 4.0. Open Geospatial Consortium; 2010. Fowler M. Inversion of control containers and the dependency injection pattern. URL: 〈http://www.martinfowler.com/articles/injection.html〉; 2004. Welicki L, Yoder JW, Wirfs-Brock R. The dynamic factory pattern. In: Proceedings of the 15th conference on pattern languages o f Programs (PLoP). New York, NY, USA: ACM. ISBN 978-1-60558-151-4; 2008. p. 9–15. Bierman GM, Meijer E, Torgersen M. Lost in translation: formalizing proposed extensions to C#. In: SIGPLAN Not, vol. 42, issue no. 10; 2007. p. 479–98. Gamma E, Helm R, Johnson R, Vlissides J. Template method. In: Design patterns: elements of reusable object-oriented software. Boston, MA, USA: Addison-Wesley. ISBN 0-201-63361-2; 1994. p. 325–30. Madhukar, 2013, Lanczos resampling for the digital processing of remotely sensed images, vol. 258, 403 Michaelis, 2009, Evaluation and implementation of the OGC web processing service for Use in Client-Side GIS, GeoInformatica, 13, 109, 10.1007/s10707-008-0048-1 Inglada J, Christophe E. The Orfeo Toolbox remote sensing image processing software. In: Geoscience and remote sensing symposium (IGRASS), IEEE international, vol. 4; 2009. p. 733–6. Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: IEEE 26th symposium on mass storage systems and technologies (MSST); 2010. p. 1–10. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. Apache hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing SOCC. New York, NY, USA: ACM; 2013. p. 5:1-16. ISBN 978-1-4503-2428-1. Zaharia M, Chowdhury M, Franklin M.J, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud computing; 2010. p. 10–6. Liu X, Han J, Zhong Y, Han C, He X. Implementing WebGIS on Hadoop: a case study of improving small file I/O performance on HDFS. In: IEEE international conference on cluster computing and workshops (CLUSTER). Washington, DC, USA: IEEE Computer Society; 2009. p. 1–8. Frank, 1992, Spatial concepts, geometric data models, and geometric data structures, Comput Geosci, 18, 409, 10.1016/0098-3004(92)90070-8 Vora M. Hadoop-HBase for large-scale data. In: Proceedings of the 2011 international conference on computer science and network technology (ICCSNT), vol. 1. Washington, DC, USA: IEEE Computer Society; 2011. p. 601–5. Dede E, Govindaraju M, Gunter D, Canon RS, Ramakrishnan L. Performance evaluation of a MongoDB and Hadoop platform for scientific data analysis. In: Proceedings of the 4th ACM workshop on scientific cloud computing (Science Cloud). New York, NY, USA: ACM. ISBN 978-1-4503-1979-9; 2013. p. 13–20. Brakatsoulas S, Pfoser D, Theodoridis Y. Revisiting R-tree construction principles. In: Proceedings of the 6th east European conference on advances in databases and information systems (ADBIS). London, UK, UK: Springer-Verlag. ISBN 3-540-44138-7; 2002. p. 149–62. Liao H, Han J, Fang J. Multi-dimensional index on hadoop distributed file system. In: Proceedings of the IEEE fifth international conference on networking, architecture, and storage (NAS). Washington, DC, USA: IEEE Computer Society. ISBN 978-0-7695-4134-1; 2010. p. 240–9. Dezső B, Fekete I, Gera D, Giachetta R, László I. Object-based image analysis in remote sensing applications using various segmentation techniques. Ann Univ Sci Budap Rolando Eötvös, Sect Comput 2012;37:103–20. Steiniger, 2013, The 2012 free and open source GIS software map – a guide to facilitate research, development, and adoption, Comput Environ Urban Syst, 39, 136, 10.1016/j.compenvurbsys.2012.10.003 Sample J, Ioup E. Logical tile schemes. In: Tile-based geospatial information systems. US: Springer. ISBN 978-1-4419-7630-7; 2010. p. 5–15.