A fractional q-derivative operator and fractional extensions of some q-orthogonal polynomials

The Ramanujan Journal - Tập 54 - Trang 29-41 - 2019
P. Njionou Sadjang1, S. Mboutngam2
1Faculty of Industrial Engineering, University of Douala, Douala, Cameroon
2Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon

Tóm tắt

A fractional q-derivative operator is introduced and some of its properties have been proved. Next, a fractional q-differential equation of Gauss type is introduced and solved by means of a power series method. Finally, q-extensions of some classical q-orthogonal polynomials are introduced and some of the main properties of the newly defined functions are given.

Tài liệu tham khảo

Annaby, M.H., Mansour, Z.S.: \(q\)-Fractional Calculus and Equations. Springer, New York (2012) Fischer, K.K.: Identifikation Spezieller Funktionen, Die Durch Rodriguesformeln Gegeben Sind, PhD thesis, Universität Kassel (2016). http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2016030349960 Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge University Press, Cambridge (1990) Koekoek, R., Lesky, P.A.: Swarttouw RF Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, New York (2010) Koorwinder, T.H.: \(q\)-Special Functions, a Tutorial (2013). http://arxiv.org/pdf/math/9403216.pdf Rainville, E.D.: Special Functions. The Macmillan Company, New York (1960)