A fourfold point of concurrence lying on the Euler line of a triangle
Tài liệu tham khảo
N. Altshiller-Court, “On the de Longchamps circle of a triangle,”Am. Math. Monthly 33 (1926), 638–375.
N. Altshiller-Court,College Geometry, Barnes and Noble, Inc. New York, 1952.
J.L. Coolidge,A Treatise on the Circle and the Sphere, Chelsea, New York, 1971.
H.S.M. Coxeter,The Real Projective Plane, 2nd ed., Cambridge University Press, Cambridge, 1955.
H.S.M. Coxeter, “Some applications of trilinear coordinates,”Linear Alg. Appl. 226-228 (1995), 375–388.
G. de Longchamps, “Sur un nouveau cercle remarquable,”J. Math. Spéciales 58 (1886) 57–60, 83–87, 100–104, and 126–128.
L. Euler, “Solutio facilis problematum quorumdam geometricorum difficillimorum,“Novi Comment” Acad. Imp. Sei. Petropolitanae 11 (1765, published 1767), 103–123. For an English abstract by J.S. Mackay, seeProc. Edin Math. Soc. 4 (1886), 51–55.
A. Gob, “Sur la droite et le cercle d’Euler,”Mathesis(1889) Supplement, 1-2.
D.R. Hofstadter, “Discovery and dissection of a geometric gem,”Geometry Turned On!, ed. by J.R. King and D. Schattschneider, Mathematical Association of America, Washington, DC, 1997, pp. 3–14.
W.P. Milne,Homogeneous Coordinates, Edward Arnold, London, 1924.
C. Nagel,Untersuchungen über die Wichtigsten zum Dreiecke Gehörigen Kreise, Mohler’schen Buchhandlung im Ulm, Leipzig 1836.
M. Simon,Über die Entwicklung der Elementar-Geometrie im XIX Jahrhundert, Teubner, Leipzig, 1906, pp. 124–141.
G. Spieker, “Ein merkwürdiger Kreis um den Schwerpunkt des Perimeters des geradlinigen Dreiecks als Analogen des Kreises der neun Punkte,”Grunert’s Arch. 51 (1870), 10–14.
E. Vigarié, “La bibliographie de la géométrie du triangle,”C.R. Fr. Avance. Sci. 2 (1895), 50–63.