A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks
Tài liệu tham khảo
Parmar, 2020, Zn (II)/Cd (II) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants, Inorg. Chem. Front., 7, 1082, 10.1039/C9QI01549C
Wang, 2020, Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb (II) and Cd (II) ions from water, ACS Appl. Nano Mater., 3, 1272, 10.1021/acsanm.9b02036
Zhang, 2016, Fabrication of novel magnetic nanoparticles of multifunctionality for water decontamination, Environ. Sci. Technol., 50, 881, 10.1021/acs.est.5b04539
Ding, 2021, Electrochemical detection of heavy metal ions in water, Chem. Commun. (J. Chem. Soc. Sect. D), 57, 7215, 10.1039/D1CC00983D
Hong, 2020, Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles, RSC Adv., 10, 3266, 10.1039/C9RA10104G
Kogan, 2007, Mobile mass spectrometer for determination of heavy metals in sea water: numerical simulation and experimental verification, Tech. Phys., 52, 1604, 10.1134/S1063784207120134
Guo, 2021, Advances in aptamer screening and aptasensors' detection of heavy metal ions, J. Nanobiotechnol., 19, 1, 10.1186/s12951-021-00914-4
Sarzanini, 2000, Metals analysis by high performance liquid chromatography, 339
Dressler, 1998, Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration, Spectrochim. Acta Part B At. Spectrosc., 53, 1527, 10.1016/S0584-8547(98)00180-3
Pyo, 2020, Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil, Sci. Total Environ., 741, 140162, 10.1016/j.scitotenv.2020.140162
Liu, 2020, A portable electromagnetic heating-microplasma atomic emission spectrometry for direct determination of heavy metals in soil, Talanta, 219, 121348, 10.1016/j.talanta.2020.121348
Khoshbin, 2019, A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion, Anal. Chim. Acta, 1071, 70, 10.1016/j.aca.2019.04.049
Ullah, 2018, Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges, TrAC Trends Anal. Chem. (Reference Ed.), 100, 155, 10.1016/j.trac.2018.01.002
Khoshbin, 2018, Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors, Biosens. Bioelectron., 116, 130, 10.1016/j.bios.2018.05.051
Khoshbin, 2020, A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions, Anal. Biochem., 597, 113689, 10.1016/j.ab.2020.113689
Khoshbin, 2021, Recent advances in computational methods for biosensor design, Biotechnol. Bioeng., 118, 555, 10.1002/bit.27618
Khoshbin, 2021, A novel liquid crystal-based aptasensor for ultra-low detection of Ochratoxin A using a π-shaped DNA structure: promising for future on-site detection test strips, Biosens. Bioelectron., 113457, 10.1016/j.bios.2021.113457
Khoshbin, 2021, Liquid crystal-based biosensors as lab-on-chip tools: promising for future on-site detection test kits, TrAC Trends Anal. Chem. (Reference Ed.), 116325, 10.1016/j.trac.2021.116325
Hong, 2012, Applications of aptasensors in clinical diagnostics, Sensors, 12, 1181, 10.3390/s120201181
Abnous, 2017, A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1, Biosens. Bioelectron., 94, 374, 10.1016/j.bios.2017.03.028
Krishna, 2018, Nanotechnology: review of concepts and potential application of sensing platforms in food safety, Food Microbiol., 75, 47, 10.1016/j.fm.2018.01.025
Farzin, 2020, HIV biosensors for early diagnosis of infection: the intertwine of nanotechnology with sensing strategies, Talanta, 206, 120201, 10.1016/j.talanta.2019.120201
Abnous, 2016, A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol, Biosens. Bioelectron., 78, 80, 10.1016/j.bios.2015.11.028
Kim, 2016, Aptamer-based nanobiosensors, Biosens. Bioelectron., 76, 2, 10.1016/j.bios.2015.06.040
Troyano, 2019, Colloidal metal–organic framework particles: the pioneering case of ZIF-8, Chem. Soc. Rev., 48, 5534, 10.1039/C9CS00472F
Li, 2019, Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework, J. Hazard Mater., 366, 563, 10.1016/j.jhazmat.2018.12.047
Li, 2021, Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions, Sustainability, 13, 984, 10.3390/su13020984
Lv, 2019, ZIF-8-assisted NaYF4: Yb, Tm@ ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor, Anal. Chem., 92, 1470, 10.1021/acs.analchem.9b04710
Jafari, 2019, Mesoporous silica nanoparticles for therapeutic/diagnostic applications, Biomed, Pharma, 109, 1100
Pitroda, 2016, A critical review on carbon nanotubes, Int. J. Constr. Res. Civ. Eng, 2, 36
Pleskova, 2018, 323
He, 2021, Based upconversion fluorescence aptasensor for the quantitative detection of immunoglobulin E in human serum, Anal. Chim. Acta, 1143, 93, 10.1016/j.aca.2020.11.036
Zhang, 2021, Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device, Biosens. Bioelectron., 180, 113146, 10.1016/j.bios.2021.113146
Ding, 2021
Xue, 2020, Label-free and regenerable aptasensor for real-time detection of cadmium (II) by dual polarization interferometry, Anal. Chem., 92, 10007, 10.1021/acs.analchem.0c01710
Lee, 2020, A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode, Microchem. J., 159, 105372, 10.1016/j.microc.2020.105372
Niu, 2020, ZnO-reduced graphene oxide composite based photoelectrochemical aptasensor for sensitive Cd (II) detection with methylene blue as sensitizer, Anal. Chim. Acta, 1118, 1, 10.1016/j.aca.2020.04.042
Cravillon, 2009, Chem. Mater., 21, 1410, 10.1021/cm900166h
Javidi, 2018, Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples, Anal. Chim. Acta, 1039, 116, 10.1016/j.aca.2018.07.041
Wu, 2014, Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+, Talanta, 128, 327, 10.1016/j.talanta.2014.04.056
Ordonez, 2010, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci., 361, 28, 10.1016/j.memsci.2010.06.017
Jomekian, 2016, Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly (ether-block-amide) as structure directing agent for gas separation, Microporous Mesoporous Mater., 234, 43, 10.1016/j.micromeso.2016.07.008
Hu, 2011, In situ high pressure study of ZIF-8 by FTIR spectroscopy, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 12694, 10.1039/c1cc15525c
Yang, 2018, A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein, Biosens. Bioelectron., 112, 186, 10.1016/j.bios.2018.04.026
Pan, 2011, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 2071, 10.1039/c0cc05002d
Schejn, 2014, Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations, CrystEngComm, 16, 4493, 10.1039/C3CE42485E
Kolmykov, 2017, Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase, Mater. Des., 122, 31, 10.1016/j.matdes.2017.03.002
Yi, 2017, Nanoscale zeolitic imidazolate framework-8 for ratiometric fluorescence imaging of microRNA in living cells, Anal. Chem., 89, 12351, 10.1021/acs.analchem.7b03369
Schmitteckert, 1999, Detection of the human hepatitis B virus X-protein in transgenic mice after radioactive labelling at a newly introduced phosphorylation site, J. Gen. Virol., 80, 2501, 10.1099/0022-1317-80-9-2501
Chen, 2020, Versatile sensing platform for Cd2+ detection in rice samples and its applications in logic gate computation, Anal. Chem., 92, 6173, 10.1021/acs.analchem.0c01022
Tang, 2018, Internal calibration potentiometric aptasensors for simultaneous detection of Hg2+, Cd2+, and As3+ based on a screen-printed carbon electrodes array, Anal. Chem., 90, 8337, 10.1021/acs.analchem.7b04150
Zhou, 2019, Label-free fluorescent aptasensor of Cd2+ detection based on the conformational switching of aptamer probe and SYBR green I, Microchem. J., 144, 377, 10.1016/j.microc.2018.09.028
Zhou, 2019, A label-free and enzyme-free aptasensor for visual Cd2+ detection based on split DNAzyme fragments, Anal. Methods, 11, 3546, 10.1039/C9AY00822E
Fakude, 2020, Electrochemical aptasensing of cadmium (II) on a carbon black-gold nano-platform, J. Electroanal. Chem., 858, 113796, 10.1016/j.jelechem.2019.113796
Li, 2019, Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of cadmium (II) ions, J. Electrochem. Soc., 166, B449, 10.1149/2.0991906jes
Gan, 2020, In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system, Talanta, 208, 120231, 10.1016/j.talanta.2019.120231
Tao, 2020, A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au–MoS2 nanocomposites, Anal. Biochem., 608, 113844, 10.1016/j.ab.2020.113844