A flexible class of non-separable cross-covariance functions for multivariate space–time data

Spatial Statistics - Tập 18 - Trang 125-146 - 2016
Marc Bourotte1, Denis Allard1, Emilio Porcu2
1Biostatistique et Processus Spatiaux (BioSP), INRA, Avignon, France
2Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile

Tài liệu tham khảo

Apanasovich, 2010, Cross-covariance functions for multivariate random fields based on latent dimensions, Biometrika, 97, 15, 10.1093/biomet/asp078 Apanasovich, 2012, A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components, J. Amer. Statist. Assoc., 107, 180, 10.1080/01621459.2011.643197 Bevilacqua, 2015, Comparing composite likelihood methods based on pairs for spatial Gaussian random fields, Stat. Comput., 25, 877, 10.1007/s11222-014-9460-6 Bevilacqua, 2012, Estimating space and space–time covariance functions for large data sets: a weighted composite likelihood approach, J. Amer. Statist. Assoc., 107, 268, 10.1080/01621459.2011.646928 Castruccio, S., Huser, R., Genton, M., 2015. High-order composite likelihood inference for max-stable distributions and processes. arXiv:1411.0086v3. Cressie, 1993 Cressie, 2011 Daley, 2014, Classes of compactly supported covariance functions for multivariate random fields, Stoch. Environ. Res. Risk Assess., 29, 1249, 10.1007/s00477-014-0996-y De Iaco, 2013, Using simultaneous diagonalization to identify a space–time linear coregionalization model, Math. Geosci., 45, 69, 10.1007/s11004-012-9408-3 DLMF, 2015. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.10 of 2015-08-07. Gelfand, 2010, Multivariate spatial process models, 495 Genton, 2015, Cross-covariance functions for multivariate geostatistics, Statist. Sci., 30, 147, 10.1214/14-STS487 Gneiting, 2002, Nonseparable, stationary covariance functions for space–time data, J. Amer. Statist. Assoc., 97, 590, 10.1198/016214502760047113 Gneiting, 2007, Geostatistical space–time models, stationarity, separability and full symmetry, 151 Gneiting, 2010, Matérn cross-covariance functions for multivariate random fields, J. Amer. Statist. Assoc., 105, 1167, 10.1198/jasa.2010.tm09420 Gneiting, 2007, Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 359, 10.1198/016214506000001437 Gneiting, 2004, Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev., 46, 269, 10.1137/S0036144501394387 Goulard, 1992, Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix, Math. Geol., 24, 269, 10.1007/BF00893750 Gradshteyn, 2007 Horn, 2012 Li, 2008, Testing the covariance structure of multivariate random fields, Biometrika, 95, 813, 10.1093/biomet/asn053 Lindsay, 1988, Composite likelihood methods, Contemp. Math., 80, 221, 10.1090/conm/080/999014 Matérn, 1986, vol. 36 Porcu, 2011, From Schoenberg to Pick–Nevanlinna: Toward a complete picture of the variogram class, Bernoulli, 17, 441, 10.3150/10-BEJ277 Porcu, 2011, Characterization theorems for some classes of covariance functions associated to vector valued random fields, J. Multivariate Anal., 102, 1293, 10.1016/j.jmva.2011.04.013 Reisert, 2007, Learning equivariant functions with matrix valued kernels, J. Mach. Learn. Res., 8, 385 Schlather, 2010, Some covariance models based on normal scale mixtures, Bernoulli, 16, 780, 10.3150/09-BEJ226 Schoenberg, 1938, Metric spaces and completely monotone functions, Ann. of Math., 39, 811, 10.2307/1968466 Varin, 2011, An overview of composite likelihood methods, Statist. Sinica, 21, 5 Wackernagel, 2003 Zhang, 2004, Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics, J. Amer. Statist. Assoc., 99, 250, 10.1198/016214504000000241