A flexible class of non-separable cross-covariance functions for multivariate space–time data
Tài liệu tham khảo
Apanasovich, 2010, Cross-covariance functions for multivariate random fields based on latent dimensions, Biometrika, 97, 15, 10.1093/biomet/asp078
Apanasovich, 2012, A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components, J. Amer. Statist. Assoc., 107, 180, 10.1080/01621459.2011.643197
Bevilacqua, 2015, Comparing composite likelihood methods based on pairs for spatial Gaussian random fields, Stat. Comput., 25, 877, 10.1007/s11222-014-9460-6
Bevilacqua, 2012, Estimating space and space–time covariance functions for large data sets: a weighted composite likelihood approach, J. Amer. Statist. Assoc., 107, 268, 10.1080/01621459.2011.646928
Castruccio, S., Huser, R., Genton, M., 2015. High-order composite likelihood inference for max-stable distributions and processes. arXiv:1411.0086v3.
Cressie, 1993
Cressie, 2011
Daley, 2014, Classes of compactly supported covariance functions for multivariate random fields, Stoch. Environ. Res. Risk Assess., 29, 1249, 10.1007/s00477-014-0996-y
De Iaco, 2013, Using simultaneous diagonalization to identify a space–time linear coregionalization model, Math. Geosci., 45, 69, 10.1007/s11004-012-9408-3
DLMF, 2015. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.10 of 2015-08-07.
Gelfand, 2010, Multivariate spatial process models, 495
Genton, 2015, Cross-covariance functions for multivariate geostatistics, Statist. Sci., 30, 147, 10.1214/14-STS487
Gneiting, 2002, Nonseparable, stationary covariance functions for space–time data, J. Amer. Statist. Assoc., 97, 590, 10.1198/016214502760047113
Gneiting, 2007, Geostatistical space–time models, stationarity, separability and full symmetry, 151
Gneiting, 2010, Matérn cross-covariance functions for multivariate random fields, J. Amer. Statist. Assoc., 105, 1167, 10.1198/jasa.2010.tm09420
Gneiting, 2007, Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 359, 10.1198/016214506000001437
Gneiting, 2004, Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev., 46, 269, 10.1137/S0036144501394387
Goulard, 1992, Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix, Math. Geol., 24, 269, 10.1007/BF00893750
Gradshteyn, 2007
Horn, 2012
Li, 2008, Testing the covariance structure of multivariate random fields, Biometrika, 95, 813, 10.1093/biomet/asn053
Lindsay, 1988, Composite likelihood methods, Contemp. Math., 80, 221, 10.1090/conm/080/999014
Matérn, 1986, vol. 36
Porcu, 2011, From Schoenberg to Pick–Nevanlinna: Toward a complete picture of the variogram class, Bernoulli, 17, 441, 10.3150/10-BEJ277
Porcu, 2011, Characterization theorems for some classes of covariance functions associated to vector valued random fields, J. Multivariate Anal., 102, 1293, 10.1016/j.jmva.2011.04.013
Reisert, 2007, Learning equivariant functions with matrix valued kernels, J. Mach. Learn. Res., 8, 385
Schlather, 2010, Some covariance models based on normal scale mixtures, Bernoulli, 16, 780, 10.3150/09-BEJ226
Schoenberg, 1938, Metric spaces and completely monotone functions, Ann. of Math., 39, 811, 10.2307/1968466
Varin, 2011, An overview of composite likelihood methods, Statist. Sinica, 21, 5
Wackernagel, 2003
Zhang, 2004, Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics, J. Amer. Statist. Assoc., 99, 250, 10.1198/016214504000000241
