A fixed point theorem for asymptotically nonexpansive mappings

Proceedings of the American Mathematical Society - Tập 35 Số 1 - Trang 171-174
Kazimierz Goebel1, W. A. Kirk1
1Department of Mathematics, Marie Curie Skíiodowska University, Lublin, Poland

Tóm tắt

Let K be a subset of a Banach space X. A mapping F : K K F:K \to K is said to be asymptotically nonexpansive if there exists a sequence { k i } \{ {k_i}\} of real numbers with k i 1 {k_i} \to 1 as i i \to \infty such that F i x F i y k i x y , x , y K \left \| {{F^i}x - {F^i}y} \right \| \leqq {k_i}\left \| {x - y} \right \|,x,y \in K . It is proved that if K is a non-empty, closed, convex, and bounded subset of a uniformly convex Banach space, and if F : K K F:K \to K is asymptotically nonexpansive, then F has a fixed point. This result generalizes a fixed point theorem for nonexpansive mappings proved independently by F. E. Browder, D. Göhde, and W. A. Kirk.

Từ khóa


Tài liệu tham khảo

Browder, Felix E., 1965, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 54, 1041, 10.1073/pnas.54.4.1041

Clarkson, James A., 1936, Uniformly convex spaces, Trans. Amer. Math. Soc., 40, 396, 10.2307/1989630

Goebel, K., 1969, An elementary proof of the fixed-point theorem of Browder and Kirk, Michigan Math. J., 16, 381, 10.1307/mmj/1029000322

Göhde, Dietrich, 1965, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30, 251, 10.1002/mana.19650300312

Kirk, W. A., 1965, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72, 1004, 10.2307/2313345

Kirk, W. A., 1969, On nonlinear mappings of strongly semicontractive type, J. Math. Anal. Appl., 27, 409, 10.1016/0022-247X(69)90057-2