A fixed point method for stability of involutions on multi-Banach algebra

Springer Science and Business Media LLC - Tập 22 - Trang 1-11 - 2020
N. Salehi1, S. M. S. Modarres2
1Department of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2Department of Mathematics, Yazd University, Yazd, Iran

Tóm tắt

We prove the Hyers–Ulam–Rassias stability of involution on multi-Banach algebra by fixed point method and find some conditions for which a multi-Banach algebra with approximate involution is a $$C^*$$-algebra.

Tài liệu tham khảo

Aoki, T.: On the stability of the linear transformation in banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950) Bourgin, D.: Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 57, 223–237 (1951) Cădariu, L., Radu, V.: Fixed points and the stability of quadratic functional equations. An. Univ. Timisoara Ser. Mat-Inform. 41(1), 25–48 (2003) Cholewa, P.W.: Remarks on the stability of functional equations. Aequat. Math. 27, 76–86 (1984) Cui, Y., Lu, G., Zhang, X., Park, C.: n-jordan\(^*\)-derivations on induced c\(^*\)-algebras. J. Comput. Anal. Appl. 26(3) (2019) Dales, H.G., Moslehian, M.S.: Stability of mapping on multi-normed spaces. Glasgow Math. J. 49(2), 321–332 (2007) Dales, H.G., Polyakov, M.E.: Multi-normed spaces and multi-banach algebras (preprint) Eshaghi Gordji, M.: Nearly involutions on banach algebras. a fixed point approach. Fixed Point Theory 14, 117–124 (2013) Găvruta, P.: A generalization of Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184(3), 431–436 (1994) Gordji, M.E., Bazeghi, S., Park, C., Jang, S.Y.: Ternary Jordan ring derivations on Banach ternary algebras: a fixed point approach. J. Comput. Anal. Appl. 21(1) (2016) Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941) Isac, G., Rassias, T.M.: Stability of \(psi\)-additive mappings: applications to nonlinear analysis. Int. J. Math. Sci. 19, 219–228 (1996) Lee, Y.-H., Rassias, J.M., Kim, H.-M.: Approximation of Jensen type quadratic-additive mappings via the fixed point theory. J. Comput. Anal. Appl. 21(4), 704–715 (2016) Park, C., Najati, A.: Homomorphisms and derivations in \(c^*\)-algebras. In: Abstract and Applied Analysis, vol. 2007, Hindawi (2007) Park, C., Rassias, M.T.: Additive functional equations and partial multipliers in \( c^* \)-algebras. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 113(3), 2261–2275 (2019) Rassias, T.M.: On the stability of the linear mapping in banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978) Ulam, S.M.: A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience Publishers, New York (1960)