A fixed-center spherical separation algorithm with kernel transformations for classification problems

Annabella Astorino1, Manlio Gaudioso2
1Istituto di Calcolo e Reti ad Alte Prestazioni–C.N.R., c/o D.E.I.S.–Università della Calabria
2Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, Rende (CS), Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Astorino A, Gaudioso M (2002) Polyhedral separability through successive LP. J OptimTheory Appl 112(2):265–293

Astorino A, Gaudioso M (2005) Ellipsoidal separation for classification problems. Optim Methods Softw 20(2–3):261–270

Bennett KP, Mangasarian OL (1992) Robust linear programming discrimination of two linearly inseparable sets. Optim Methods Softw 1:23–34

Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers, PDF version data mining institute technical report 01–02, February 2001—Proceedings KDD-2001, San Francisco August 26–29, 2001—Association for Computing Machinery, New York, pp 77–86

Joachims T (1999). Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT, Cambridge, pp 169–184

Mangasarian OL (1965) Linear and nonlinear separation of patterns by linear programming. Oper Res 13:444–452

Murphy PM, Aha DW (1992) UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

Odewahn S, Stockwell E, Pennington R, Humphreys R, Zumach W (1992) Automated star/galaxy discrimination with neural networks. Astron J 103(1):318–331

Rosen JB (1965) Pattern separation by convex programming. J Math Anal Appl 10:123–134

Schölkopf B, Burges CJC, Smola AJ (eds) (1999) Advances in kernel methods: support vector learning. MIT, Cambridge

Tax DMJ, Duin RPW (1999) Data domain description using support vectors. In: ESANN’1999 proceedings Bruges (Belgium), 21–23 April 1999, D-Facto public, ISBN 2-600049-9-x, pp 251–256

Vapnik V (1995) The nature of the statistical learning theory. Springer, New York