A first approximation for quantization of singular spaces

Journal of Geometry and Physics - Tập 59 - Trang 503-518 - 2009
Norbert Poncin1, Fabian Radoux1, Robert Wolak2
1University of Luxembourg, Campus Limpertsberg, Institute of Mathematics, 162A, avenue de la Faïencerie, L-1511 Luxembourg City, Luxembourg
2Jagiellonian University, ulica Reymonta 4 30-059 Krakow, Poland

Tài liệu tham khảo

Bordemann, 2007, A homological approach to singular reduction in deformation quantization, 443 J. Huebschmann, Quantization and reduction. arXiv: math/0207166 J. Huebschmann, Classical phase space singularities and quantization. arXiv: math-ph/0610047v1 J. Huebschmann, G. Rudolph, M. Schmidt, A gauge model for quantum mechanics on a stratified space. arXiv: hep-th/0702017 L. Hui, Singular unitary in “quantization commutes with reduction”. arXiv: 0706.1471 Pflaum, 2003, On the deformation quantization of symplectic orbispaces, Differ. Geom. Appl., 19, 343, 10.1016/S0926-2245(03)00050-0 Richardson, 2001, The transverse geometry of G-manifolds and Riemannian foliations, Illinois J. Math., 45, 517, 10.1215/ijm/1258138353 Lecomte, 1996, Comparison of some modules of the Lie algebra of vector fields, Indag. Math., 7, 461, 10.1016/S0019-3577(97)89133-1 Lecomte, 1999, Projectively equivariant symbol calculus, Lett. Math. Phys., 49, 173, 10.1023/A:1007662702470 Duval, 1999, Conformally equivariant quantization: Existence and uniqueness, Ann. Inst. Fourier, 49, 1999, 10.5802/aif.1744 Lecomte, 2000, On the cohomology of sl(m+1,R) acting on differential operators and sl(m+1,R)-equivariant symbol, Indag. Math., 11, 95, 10.1016/S0019-3577(00)88577-8 Boniver, 2001, Maximal subalgebras of vector fields for equivariant quantizations, J. Math. Phys., 42, 582, 10.1063/1.1332782 Duval, 2001, Projectively equivariant quantization and symbol calculus: Noncommutative hypergeometric functions, Lett. Math. Phys., 57, 61, 10.1023/A:1017954812000 Boniver, 2002, Equivariant symbol calculus for differential operators acting on forms, Lett. Math. Phys., 62, 219, 10.1023/A:1022251607566 Boniver, 2006, IFFT-equivariant quantizations, J. Geom. Phys., 56, 712, 10.1016/j.geomphys.2005.04.014 Lecomte, 2001, Towards projectively equivariant quantization, Progr. Theoret. Phys. Suppl., 144, 125, 10.1143/PTPS.144.125 M. Bordemann, Sur l’existence d’une prescription d’ordre naturelle projectivement invariante. arXiv:math.DG/0208171 Mathonet, 2005, Natural and projectively equivariant quantizations by means of Cartan connections, Lett. Math. Phys., 72, 183, 10.1007/s11005-005-6783-4 Hansoul, 2007, Existence of natural and projectively equivariant quantizations, Adv. Math., 214, 832, 10.1016/j.aim.2007.03.007 Wolak, 1989, Foliated and associated geometric structures on foliated manifolds, Ann. Fac. Sci. Toulouse, 10, 337, 10.5802/afst.681 Kobayashi, 1972 Blumenthal, 1984, Cartan connections in foliated bundles, Michigan Math. J., 31, 55, 10.1307/mmj/1029002961 Čap, 1997, Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation, Acta Math. Univ. Comenian. (N.S.), 66, 33