A finite model theorem for the propositional ?-calculus

Dexter Kozen1
1Department of Computer Science, Cornell University, Ithaca, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. J. Fischer and R. E. Ladner, Prepositional Dynamic Logic of regular programs, J. Comput. Syst. Sci. 18:2 (1979), pp. 194?211.

D. Kozen, Results on the propositional ?-calculus, in: E. Schmidt (ed.), Proc. 9th Int. Colloq. Automata, Languages, and Programming 1982, Lect. Notes in Comput. Sci. 140, Springer, 1982, pp. 348?359.

D. Kozen and R. Parikh, A decision procedure for the propositional ?-calculus, in: E. Clarke and D. Kozen (eds.), Proc. Workshop on Logics of Programs 1983, Lect. Notes in Comput. Sci. 164, Springer, 1984, pp. 313?326.

R. Laver, Well-quasi-ordering s and sets of finite sequences, Proc. Camb. Phil. Soc. 79 (1976), pp. 1?10.

R. Laver, Better-quasi-orderings and a class of trees, in: Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, v.1 (1978), pp. 31?48.

C. St. J. A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Camb. Phil. Soc. 61 (1965), pp. 697?720.

C. St. J. A. Nash-Williams, On better-quasi-ordering transfinite sequences, Proc. Camb. Phil. Soc. 64 (1968), pp. 273?290.

V. R. Pratt, A decidable ?-calculus (preliminary report), Proc. 22nd IEEE Symp. Found. Comput. Sci., 1981, pp. 421?427.

R. Streett, Propositional Dynamic Logic of looping and converse, Proc. 13th ACM Symp. Theory of Comput., 1981, pp. 375?383.

R. Streett and E. A. Emerson, An elementary decision procedure for the ?-calculus, in: J. Paredaens (ed.), Proc. 11th Int. Colloq. Automata, Languages, and Programming 1984, Lect. Notes in Comput. Sci. 172, Springer, 1984, pp. 465?472.

D. Scott and J. de Bakker, A theory of programs, unpublished notes, Vienna, 1969.