A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products

Biotechnology Advances - Tập 37 - Trang 107360 - 2019
Judith Becker1, Christoph Wittmann1
1Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123 Saarbrücken, Germany

Tài liệu tham khảo

Abdelaziz, 2016, Biological valorization of low molecular weight lignin, Biotechnol. Adv., 1318, 10.1016/j.biotechadv.2016.10.001 Abe, 2005, A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6, J. Bacteriol., 187, 2030, 10.1128/JB.187.6.2030-2037.2005 Adler, 2013, Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions, Appl. Environ. Microbiol., 79, 5670, 10.1128/AEM.01483-13 Adler, 2014, The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions, Appl. Environ. Microbiol., 80, 4702, 10.1128/AEM.01048-14 Ahmad, 2010, Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders, Mol. Biosyst., 6, 815, 10.1039/b908966g Ahmad, 2011, Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase, Biochem., 50, 5096, 10.1021/bi101892z Alvarez-Rodriguez, 2003, Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples, FEMS Microbiol. Lett., 220, 49, 10.1016/S0378-1097(03)00053-3 An, 2000, Characterization of benzoate degradation via ortho-cleavage by Streptomyces setonii, J. Microbiol. Biotechnol., 10, 111 Arazoe, 2018, Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering, Biotechnol. J., 13, 10.1002/biot.201700596 Banerjee, 2019, Vanillin biotechnology: the perspectives and future, J. Sci. Food Agric., 99, 499, 10.1002/jsfa.9303 Bang, 1995, DO-stat fed-batch production of cis, cis-muconic acid from benzoic acid by Pseudomonas putida BM014, J. Ferm. Bioeng., 79, 381, 10.1016/0922-338X(95)94001-8 Banno, 2018, Deaminase-mediated multiplex genome editing in Escherichia coli, Nat. Microbiol., 3, 423, 10.1038/s41564-017-0102-6 Barry, 2013, Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6, Biochem., 52, 6724, 10.1021/bi400665t Barton, 2018, Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116, Metab. Eng., 45, 200, 10.1016/j.ymben.2017.12.001 Baumgärtner, 2014, Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli, Chembiochem, 15, 1896, 10.1002/cbic.201402070 Becker, 2015, Advanced Biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products, Angew. Chem. Int. Ed. Engl., 54, 3328, 10.1002/anie.201409033 Becker, 2018, From systems biology to metabolically engineered cells-an omics perspective on the development of industrial microbes, Curr. Opin. Microbiol., 45, 180, 10.1016/j.mib.2018.06.001 Becker, 2011, From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production, Metab. Eng., 159, 10.1016/j.ymben.2011.01.003 Becker, 2013, Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens, Biotechnol. Bioeng., 110, 3013, 10.1002/bit.24963 Becker, 2013, Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine, Microb. Cell Fact., 12, 110, 10.1186/1475-2859-12-110 Becker, 2015, Top value platform chemicals: bio-based production of organic acids, Curr. Opin. Biotechnol., 36, 168, 10.1016/j.copbio.2015.08.022 Becker, 2018, Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin, Microb. Cell Fact., 17, 115, 10.1186/s12934-018-0963-2 Becker, 2018, Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products, Metab. Eng., 50, 122, 10.1016/j.ymben.2018.07.008 Beckham, 2016, Opportunities and challenges in biological lignin valorization, Curr. Opin. Biotechnol., 42, 40, 10.1016/j.copbio.2016.02.030 Belda, 2016, The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis, Environ. Microbiol., 18, 3403, 10.1111/1462-2920.13230 Bilal, 2018, Engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals, Protein Pept. Lett., 25, 108, 10.2174/0929866525666180122105835 Blazeck, 2014, Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production, Appl. Microbiol. Biotechnol., 98, 8155, 10.1007/s00253-014-5895-0 Bommareddy, 2014, A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase, Metab. Eng., 25, 30, 10.1016/j.ymben.2014.06.005 Brennan, 2017, Genome Sequence of Oceanimonas doudoroffii ATCC 27123(T), Genome Announc., 5, 10.1128/genomeA.00996-17 Brunow, 2010, Lignin chemistry and its role in biomass conversion, 151 Bugg, 2011, The emerging role for bacteria in lignin degradation and bio-product formation, Curr. Opin. Biotechnol., 22, 394, 10.1016/j.copbio.2010.10.009 Busche, 2012, Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum, BMC Genomics, 13, 445, 10.1186/1471-2164-13-445 Buschke, 2011, Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose, Biotechnol. J., 6, 306, 10.1002/biot.201000304 Buschke, 2013, Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane, Biotechnol. J., 557, 10.1002/biot.201200367 Buschke, 2013, Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies, Bioresour. Technol., 135, 544, 10.1016/j.biortech.2012.11.047 Cao, 2018, Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects, Bioresour. Technol., 269, 465, 10.1016/j.biortech.2018.08.065 Chae, 2015, Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine, Sci. Rep., 5, 13040, 10.1038/srep13040 Chai, 2014, Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9, Appl. Microbiol. Biotechnol., 98, 1907, 10.1007/s00253-013-5166-5 Chandra, 2007, Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste, Chemosphere, 67, 839, 10.1016/j.chemosphere.2006.10.011 Chen, 2017, Biological valorization strategies for converting lignin into fuels and chemicals, Renew. Sust. Energ. Rev., 73, 610, 10.1016/j.rser.2017.01.166 Chen, 2014, The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866, Appl. Microbiol. Biotechnol., 98, 1349, 10.1007/s00253-013-5001-z Chen, 2018, Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR, Microbiol. Res., 209, 14, 10.1016/j.micres.2018.02.001 Cho, 2013, Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins, Genetics, 195, 1177, 10.1534/genetics.113.155853 Cho, 2017, CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum, Metab. Eng., 42, 157, 10.1016/j.ymben.2017.06.010 Choi, 1997, Enhanced production of cis,cis-muconate in a cell-recycle bioreactor, J. Ferm. Bioeng., 84, 70, 10.1016/S0922-338X(97)82789-4 Chu, 2015, Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli, Biotechnol. Bioeng., 112, 356, 10.1002/bit.25444 Chua, 1990, Oxidative bioconversion of toluene to 1,3-butadiene-1,4-dicarboxylic acid (cis,cis-muconic acid), World J. Microbiol. Biotechnol., 6, 127, 10.1007/BF01200932 Clarkson, 2017, Construction and optimization of a heterologous pathway for protocatechuate catabolism in Escherichia coli enables bioconversion of model aromatic compounds, Appl. Environ. Microbiol., 83, 10.1128/AEM.01313-17 Constant, 2016, New insights into the structure and composition of technical lignins: a comparative characterisation study, Green Chem., 18, 2651, 10.1039/C5GC03043A Cook, 2018, Genetic tools for reliable gene expression and recombineering in Pseudomonas putida, J. Ind. Microbiol. Biotechnol., 45, 517, 10.1007/s10295-017-2001-5 Corona, 2018, Life cycle assessment of adipic acid production from lignin, Green Chem., 20, 3857, 10.1039/C8GC00868J Cumplido-Laso, 2012, The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis, J. Exp. Bot., 63, 4275, 10.1093/jxb/ers120 Curran, 2013, Metabolic engineering of muconic acid production in Saccharomyces cerevisiae, Metab. Eng., 15, 55, 10.1016/j.ymben.2012.10.003 Dashtban, 2010, Fungal biodegradation and enzymatic modification of lignin, Int. J. Biochem. Mol. Biol., 1, 36 Davis, 2013 de Gonzalo, 2016, Bacterial enzymes involved in lignin degradation, J. Biotechnol., 236, 110, 10.1016/j.jbiotec.2016.08.011 de Jong, 1992, Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD, Eur. J. Biochem., 208, 651, 10.1111/j.1432-1033.1992.tb17231.x Deangelis, 2013, Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1, Front. Microbiol., 4, 280, 10.3389/fmicb.2013.00280 Donnelly, 1980, Production of methanol from aromatic acids by Pseudomonas putida, J. Bacteriol., 142, 916, 10.1128/jb.142.3.916-924.1980 Draths, 1994, Environmentally compatible synthesis of adipic acid from D-glucose, J. Am. Chem. Soc., 116, 399, 10.1021/ja00080a057 Du, 2016, Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum, J. Biol. Chem., 291, 6583, 10.1074/jbc.M115.695320 Dvorak, 2017, Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol, Adv., 35, 845 Eastwood, 2011, The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi, Science, 333, 762, 10.1126/science.1205411 El-Sharkawy, 2005, Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity*, Plant Mol. Biol., 59, 345, 10.1007/s11103-005-8884-y Elss, 2005, Aroma profiles of pineapple fruit (Ananas comosus [L.] Merr.) and pineapple products, Lwt-Food Sci. Technol., 38, 263, 10.1016/j.lwt.2004.07.014 Eltis, 1993, Purification and Characterization of Cytochrome-P450RR1 from Rhodococcus rhodochrous, Eur. J. Biochem., 213, 211, 10.1111/j.1432-1033.1993.tb17750.x Erden, 2009, Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue, Braz. J. Microbiol., 40, 346, 10.1590/S1517-83822009000200026 Fache, 2016, Vanillin production from lignin and its use as a renewable chemical, ACS Sustain. Chem. Eng., 4, 35, 10.1021/acssuschemeng.5b01344 Fernandez-Rodriguez, 2017, Lignin depolymerization for phenolic monomers production by sustainable processes, J. Energy Chem., 26, 622, 10.1016/j.jechem.2017.02.007 Fischer, 2008, Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression, Microbiology, 154, 3095, 10.1099/mic.0.2008/016907-0 Ghodake, 2009, Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes, Appl. Biochem. Biotechnol., 152, 6, 10.1007/s12010-008-8258-4 Gibson, 2009, Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides, Nucleic Acids Res., 37, 6984, 10.1093/nar/gkp687 Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318 Glenn, 1985, Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium, Arch. Biochem. Biophys., 242, 329, 10.1016/0003-9861(85)90217-6 Glenn, 1986, Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium, Arch. Biochem. Biophys., 251, 688, 10.1016/0003-9861(86)90378-4 Gottschalk, 2008, Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration, Appl. Biochem. Biotechnol., 147, 23, 10.1007/s12010-007-8081-3 Grant, 1969, Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes), Anton. Van Lee. J. M. S., 35 Grund, 1990, Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp, Appl. Environ. Microbiol., 56, 1459, 10.1128/aem.56.5.1459-1464.1990 Günther, 2011, Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences, Phytochemistry, 72, 700, 10.1016/j.phytochem.2011.02.026 Hämäläinen, 2018, Enzymatic processes to unlock the lignin value, Front. Bioeng. Biotechnol., 6, 20, 10.3389/fbioe.2018.00020 Harayama, 1990, The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes, Mol. Gen. Genet., 221, 113, 10.1007/BF00280375 Harder, 2016, Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli, Metab. Eng., 38, 29, 10.1016/j.ymben.2016.05.008 Heider, 2014, Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 98, 1223, 10.1007/s00253-013-5359-y Heinaru, 2000, Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds, FEMS Microbiol. Ecol., 31, 195, 10.1111/j.1574-6941.2000.tb00684.x Hemme, 2014, Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii, The Plant cell, 26, 4270, 10.1105/tpc.114.130997 Henson, 2018, Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus, Metab. Eng., 49, 69, 10.1016/j.ymben.2018.06.009 Henson, 2018, Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion, Biotechnol. Biofuels, 11, 339, 10.1186/s13068-018-1337-z Higuchi, 2018, Bacterial catabolism of beta-hydroxypropiovanillone and beta-hydroxypropiosyringone produced in the reductive cleavage of arylglycerol-beta-aryl ether in lignin, Appl. Environ. Microbiol., 84(7) Hochman, 1991, Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae, Biochim. Biophys. Acta, 1077, 299, 10.1016/0167-4838(91)90544-A Hoffmann, 2018, Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes, Metab. Eng., 47, 475, 10.1016/j.ymben.2018.04.019 Hofrichter, 2002, Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb, Technol., 30, 454 Hogancamp, 2018, Functional annotation of LigU as a 1,3-allylic isomerase during the degradation of lignin in the protocatechuate 4,5-cleavage pathway from the soil bacterium Sphingobium sp. SYK-6, Biochem., 57, 2837, 10.1021/acs.biochem.8b00295 Holland, 2005, Developmental and varietal differences in volatile ester formation and acetyl-CoA: alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. J. Agric, Food Chem., 53, 7198, 10.1021/jf050519k Hong, 2017, Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid, ACS Chem. Biol., 12, 1749, 10.1021/acschembio.7b00046 Hong, 2018, Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis, J. Biotechnol., 281, 175, 10.1016/j.jbiotec.2018.07.020 Hopper, 1975, Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida, J. Bacteriol., 122, 1, 10.1128/jb.122.1.1-6.1975 Hsieh, J.H., 1984. Continuous fermentation process and bioconversion-product recovery, US Patent No. 4480034. Hsieh, J.H., 1985. Muconic acid productivity by a stabilized mutant microorganism population, US Patent No. 4535059. Hsieh, J.H., 1990. Continuous fermentation process for aromatic hydrocarbon bioconversion, US Patent No. 4968612. Huang, 2008, Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 78, 75, 10.1007/s00253-007-1286-0 Huang, 2013, Isolation and characterization of lignin-degrading bacteria from rainforest soils, Biotechnol. Bioeng., 110, 1616, 10.1002/bit.24833 Huang, 2014, Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain, Microb. Cell Fact., 13, 119, 10.1186/s12934-014-0119-y Imada, 1989 Inokuma, 2017, Improvement of xylose fermentation ability under heat and acid co-stress in Saccharomyces cerevisiae using genome shuffling technique, Front. Bioeng. Biotechnol., 5, 81, 10.3389/fbioe.2017.00081 Jayakody, 2018, Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism, Appl. Microbiol. Biotechnol., 102, 8121, 10.1007/s00253-018-9216-x Jeschek, 2016, Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort, Nat. Commun., 7, 11163, 10.1038/ncomms11163 Jimenez, 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440, Environ. Microbiol., 4, 824, 10.1046/j.1462-2920.2002.00370.x Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Johnson, 2015, Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin, Metab. Eng., 28, 240, 10.1016/j.ymben.2015.01.005 Johnson, 2016, Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity, Metab. Eng. Commun., 3, 111, 10.1016/j.meteno.2016.04.002 Johnson, 2017, Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440, Metab. Eng. Commun., 5, 19, 10.1016/j.meteno.2017.05.002 Jojima, 2015, Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 99, 1165, 10.1007/s00253-014-6223-4 Kallscheuer, 2016, Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 100, 1871, 10.1007/s00253-015-7165-1 Kamimura, 2017, A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde, Sci. Rep., 7, 44422, 10.1038/srep44422 Kaneko, 2011, High-yield production of cis,cis-muconic acid from catechol in aqueous solution by biocatalyst, Chem. Lett., 40, 381, 10.1246/cl.2011.381 Kang, 2013, Hydrothermal conversion of lignin: A review, Renew. Sust. Energ. Rev., 27, 546, 10.1016/j.rser.2013.07.013 Karlson, 1993, Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate, J. Bacteriol., 175, 1467, 10.1128/jb.175.5.1467-1474.1993 Kasai, 2005, Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6, J. Bacteriol., 187, 5067, 10.1128/JB.187.15.5067-5074.2005 Kasai, 2009, Uncovering the protocatechuate 2,3-cleavage pathway genes, J. Bacteriol., 191, 6758, 10.1128/JB.00840-09 Kasai, 2012, Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6, FEMS Microbiol. Lett., 332, 68, 10.1111/j.1574-6968.2012.02576.x Keat, 1978, The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol, Biochem J., 175, 659, 10.1042/bj1750659 Keat, 1978, p-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896, Biochem. J., 175, 649, 10.1042/bj1750649 Khan, 2018, Lignin-based composite materials for photocatalysis and photovoltaics, Top. Curr. Chem., 376, 20, 10.1007/s41061-018-0198-z Kiefer, 2004, Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose, Appl. Environ. Microbiol., 70, 229, 10.1128/AEM.70.1.229-239.2004 Kind, 2010, Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane, Metab. Eng., 12, 341, 10.1016/j.ymben.2010.03.005 Kind, 2010, Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum, Appl. Environ. Microbiol., 76, 5175, 10.1128/AEM.00834-10 Kind, 2011, Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum, Metab. Eng., 13, 617, 10.1016/j.ymben.2011.07.006 Kind, 2014, From zero to hero - Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum, Metab. Eng., 25, 113, 10.1016/j.ymben.2014.05.007 Kirk, 1984, Biochemistry of the oxidation of lignin by Phanerochaete chrysosporium, Biotechnol. Adv., 2, 183, 10.1016/0734-9750(84)90004-1 Kohler, 2018, Structure-based engineering of a plant-fungal Hybrid peroxidase for enhanced temperature and pH tolerance, Cell chemical biology, 25, 974, 10.1016/j.chembiol.2018.04.014 Kohlstedt, 2010, Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism, Appl. Microbiol. Biotechnol., 88, 1065, 10.1007/s00253-010-2854-2 Kohlstedt, 2014, Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective, Environ. Microbiol., 16, 1898, 10.1111/1462-2920.12438 Kohlstedt, 2018, From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida, Metab. Eng., 47, 279, 10.1016/j.ymben.2018.03.003 Kosa, 2012, Bioconversion of lignin model compounds with oleaginous Rhodococci, Appl. Microbiol. Biotechnol., 93, 891, 10.1007/s00253-011-3743-z Kosa, 2013, Lignin to lipid bioconversion by oleaginous Rhodococci, Green Chem., 15, 2070, 10.1039/c3gc40434j Krömer, 2004, In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome, J. Bacteriol., 186, 1769, 10.1128/JB.186.6.1769-1784.2004 Krömer, 2008, Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR, Microbiology, 154, 3917, 10.1099/mic.0.2008/021204-0 Kuatsjah, 2017, Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl, FEBS Lett., 591, 1001, 10.1002/1873-3468.12611 Kumar, 2018, Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions, World J. Microbiol. Biotechnol., 34, 32, 10.1007/s11274-018-2416-9 Kumar, 2017, Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp, ISTKB. ACS Omega, 2, 9156, 10.1021/acsomega.7b01615 Kumari, 2002, Secretion of ligninperoxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus, Indian journal of experimental biology, 40, 802 Lange, 2017, Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens, Metab. Eng., 44, 198, 10.1016/j.ymben.2017.10.003 Larsson, 2001, Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase, Appl. Environ. Microbiol., 67, 1163, 10.1128/AEM.67.3.1163-1170.2001 Lee, 2007, Systems metabolic engineering of Escherichia coli for L-threonine production, Mol. Syst. Biol., 3, 149, 10.1038/msb4100196 Lee, 2013, Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling, Biotechnol. Lett., 35, 709, 10.1007/s10529-012-1135-9 Linger, 2014, Lignin valorization through integrated biological funneling and chemical catalysis, Proc. Natl. Acad. Sci., 111, 12013, 10.1073/pnas.1410657111 Liu, 2003, Bioconversion of benzoic acid to cis, cis-muconic acid by Corynebacterium pseudodiphtheriticum, Food Sci. Agri. Chem., 5, 7 Liu, 2017, Bicistronic expression strategy for high-level expression of recombinant proteins in Corynebacterium glutamicum, Eng. Lif. Sci., 17 Liu, 2018, Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion, Biotechnol. Biofuels, 11, 21, 10.1186/s13068-018-1021-3 López, 2017, The fungal ability for biobleaching/biopulping/bioremediation of lignin-like compounds of agro-industrial raw material, Quim. Nova, 40, 916 Lv, 2018, Structure-guided engineering of the substrate specificity of a fungal beta-glucuronidase toward triterpenoid saponins, J. Biol. Chem., 293, 433, 10.1074/jbc.M117.801910 Ma, 2017, Systems metabolic engineering strategies for the production of amino acids, Synth. Syst. Biotechnol., 2, 87, 10.1016/j.synbio.2017.07.003 Majumdar, 2014, Roles of small laccases from Streptomyces in lignin degradation, Biochem., 53, 4047, 10.1021/bi500285t Mallinson, 2018, A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion, Nat. Commun., 9, 2487, 10.1038/s41467-018-04878-2 Marinovic, 2018, Selective cleavage of lignin beta-O-4 aryl ether bond by beta-etherase of the white-rot fungus Dichomitus squalens, ACS Sustain. Chem. Eng., 6, 2878, 10.1021/acssuschemeng.7b03619 Martani, 2017, The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx134 Martinez, 2005, Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin, Int. Microbiol., 8, 195 Martinez-Garcia, 2014, Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression, Microb. Cell Fact., 13, 159, 10.1186/s12934-014-0159-3 Martinez-Garcia, 2014, The metabolic cost of flagellar motion in Pseudomonas putida KT2440, Environ. Microbiol., 16, 291, 10.1111/1462-2920.12309 Martins-Santana, 2018, Systems and synthetic biology approaches to engineer fungi for fine chemical production, Front. Bioeng. Biotechnol., 6, 117, 10.3389/fbioe.2018.00117 Masai, 1989, Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6), FEBS Lett., 249, 348, 10.1016/0014-5793(89)80656-8 Masai, 2002, Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6, Appl. Environ. Microbiol., 68, 4416, 10.1128/AEM.68.9.4416-4424.2002 Masai, 2007, Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds, Biosci. Biotechnol. Biochem., 71, 1, 10.1271/bbb.60437 Masai, 2007, Characterization of ligV essential for catabolism of vanillin by Sphingomonas paucimobilis SYK-6, Biosci. Biotechnol. Biochem., 71, 2487, 10.1271/bbb.70267 Masai, 2012, Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. J, Bacteriol., 194, 534, 10.1128/JB.06254-11 Maxwell, P.C., 1982. Production of muconic acid, US Patent No. 4355107. Maxwell, P.C., 1986. Process for the production of muconic acid, US Patent No. 4588688. Maxwell, P.C., 1988. Process for the production of muconic acid, US Patent No. 4731328. Maxwell, P.C., 1991. Microbial culture having catechol 1,2-oxygenase activity, US Patent No. 5026648. Merkens, 2005, Vanillate metabolism in Corynebacterium glutamicum, Curr. Microbiol., 51, 59, 10.1007/s00284-005-4531-8 Mimitsuka, 2007, Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation, Biosci. Biotechnol. Biochem., 71, 2130, 10.1271/bbb.60699 Minty, 2011, Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli, Microb. Cell Fact., 10, 18, 10.1186/1475-2859-10-18 Mitsunobu, 2017, Beyond Native Cas9: Manipulating Genomic Information and Function, Trends Biotechnol., 35, 983, 10.1016/j.tibtech.2017.06.004 Mizuno, 1988, Microbial production of cis,cis-muconic acid from benzoic acid, Appl. Microbiol. Biotechnol., 28, 20, 10.1007/BF00250491 Moore, 2016, EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology, ACS Synth. Biol., 5, 1059, 10.1021/acssynbio.6b00031 Muheim, 1999, Towards a high-yield bioconversion of ferulic acid to vanillin, Appl. Microbiol. Biotechnol., 51, 456, 10.1007/s002530051416 Mutalik, 2013, Precise and reliable gene expression via standard transcription and translation initiation elements, Nat. Methods, 10, 354, 10.1038/nmeth.2404 Muthu, 2018 Mycroft, 2015, Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways, Green Chem., 17, 4974, 10.1039/C5GC01347J Narbad, 1998, Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens, Microbiology, 144, 1397, 10.1099/00221287-144-5-1397 Naseem, 2016, Lignin-derivatives based polymers, blends and composites: A review, Int. J. Biol. Macromol., 93, 296, 10.1016/j.ijbiomac.2016.08.030 Nikel, 2014, Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis, N. Biotechnol., 31, 562, 10.1016/j.nbt.2014.02.006 Nikel, 2018, Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism, Metab. Eng., 50, 142, 10.1016/j.ymben.2018.05.005 Nikel, 2014, Biotechnological domestication of pseudomonads using synthetic biology, Nat. Rev. Microbiol., 12, 368, 10.1038/nrmicro3253 Nishikawa, 1998, Cloning and sequencing of the Sphingomonas (Pseudomonas) paucimobilis gene essential for the O demethylation of vanillate and syringate, Appl. Environ. Microbiol., 64, 836, 10.1128/AEM.64.3.836-842.1998 Nishizaki, 2007, Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis, Appl. Environ. Microbiol., 73, 1355, 10.1128/AEM.02268-06 Noda, 1990, Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis, J. Bacteriol., 172, 2704, 10.1128/jb.172.5.2704-2709.1990 Nogales, 2005, Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases, J. Biol. Chem., 280, 35382, 10.1074/jbc.M502585200 Numata, 2015, Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: Contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii, ACS Sustain. Chem. Eng., 3, 569, 10.1021/acssuschemeng.5b00031 Oide, 2015, Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution, Appl. Environ. Microbiol., 81, 2284, 10.1128/AEM.03973-14 Orellana, 2017, Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium, PLoS One, 12, 10.1371/journal.pone.0186440 Overhage, 1999, Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene, Appl. Microbiol. Biotechnol., 52, 820, 10.1007/s002530051598 Overhage, 1999, Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199, Appl. Environ. Microbiol., 65, 4837, 10.1128/AEM.65.11.4837-4847.1999 Overhage, 2002, Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16, Appl. Environ. Microbiol., 68, 4315, 10.1128/AEM.68.9.4315-4321.2002 Overhage, 2003, Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli, Appl. Environ. Microbiol., 69, 6569, 10.1128/AEM.69.11.6569-6576.2003 Overhage, 2006, Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167, J. Biotechnol., 125, 369, 10.1016/j.jbiotec.2006.03.024 Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051 Palazzolo, 2016, Microbial utilization of lignin: available biotechnologies for its degradation and valorization, World J. Microbiol. Biotechnol., 32, 173, 10.1007/s11274-016-2128-y Park, 2003, An inducible Streptomyces gene cluster involved in aromatic compound metabolism, FEMS Microbiol. Lett., 226, 151, 10.1016/S0378-1097(03)00585-8 Park, 2014, Metabolic engineering of Corynebacterium glutamicum for L-arginine production, Nat. Commun., 5, 4618, 10.1038/ncomms5618 Payer, 2017, Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase, Angew. Chem. Int. Ed. Engl., 56, 13893, 10.1002/anie.201708091 Peng, 1998, Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme, Appl. Environ. Microbiol., 64, 2520, 10.1128/AEM.64.7.2520-2527.1998 Peng, 1999, Characterization of the meta-cleavage compound hydrolase gene involved in degradation of the lignin-related biphenyl structure by Sphingomonas paucimobilis SYK-6, Appl. Environ. Microbiol., 65, 2789, 10.1128/AEM.65.6.2789-2793.1999 Peng, 2002, Characterization of the 5-carboxyvanillate decarboxylase gene and its role in lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6, Appl. Environ. Microbiol., 68, 4407, 10.1128/AEM.68.9.4407-4415.2002 Pfeifer, 2017, Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium, Sci. Rep., 7, 16780, 10.1038/s41598-017-17014-9 Pinkowska, 2012, Hydrothermal decomposition of alkali lignin in sub- and supercritical water, Chem. Eng. J., 187, 410, 10.1016/j.cej.2012.01.092 Plaggenborg, 2003, Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440, Appl. Microbiol. Biotechnol., 61, 528, 10.1007/s00253-003-1260-4 Plaggenborg, 2006, Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol, Appl. Microbiol. Biotechnol., 72, 745, 10.1007/s00253-005-0302-5 Poblete-Castro, 2012, Industrial biotechnology of Pseudomonas putida and related species, Appl. Microbiol. Biotechnol., 93, 2279, 10.1007/s00253-012-3928-0 Poblete-Castro, 2013, In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates, Metab. Eng., 15, 113, 10.1016/j.ymben.2012.10.004 Polen, 2013, Toward biotechnological production of adipic acid and precursors from biorenewables, J. Biotechnol., 167, 75, 10.1016/j.jbiotec.2012.07.008 Pometto, 1981, Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol, Can. J. Microbiol., 27, 636, 10.1139/m81-097 Ponnusamy, 2019, A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential, Bioresour. Technol., 271, 462, 10.1016/j.biortech.2018.09.070 Portnoy, 2011, Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering, Curr. Opin. Biotechnol., 22, 590, 10.1016/j.copbio.2011.03.007 Priefert, 1997, Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate, J. Bacteriol., 179, 2595, 10.1128/jb.179.8.2595-2607.1997 Priefert, 2001, Biotechnological production of vanillin, Appl. Microbiol. Biotechnol., 56, 296, 10.1007/s002530100687 Pye, 2010, Industrial lignin production and application, 165 Qian, 2009, Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine, Biotechnol. Bioeng., 104, 651 Qian, 2011, Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine, Biotechnol. Bioeng., 108, 93, 10.1002/bit.22918 Ragauskas, 2014, Lignin valorization: improving lignin processing in the biorefinery, Science, 344, 1246843, 10.1126/science.1246843 Raivio, 2013, The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity, J. Bacteriol., 195, 2755, 10.1128/JB.00105-13 Ramos, 2015, Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol, Rev., 39, 555 Rampioni, 2019, Gene-Expressing Liposomes as Synthetic Cells for Molecular Communication Studies, Front. Bioeng. Biotechnol., 7, 1, 10.3389/fbioe.2019.00001 Rey, 2003, The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum, J. Biotechnol., 103, 51, 10.1016/S0168-1656(03)00073-7 Rey, 2005, The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032, Mol. Microbiol., 56, 871, 10.1111/j.1365-2958.2005.04586.x Rinaldi, 2016, Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis, Angew. Chem. Int. Ed. Engl., 55, 8164, 10.1002/anie.201510351 Roberts, 2011, Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1, Biochem., 50, 5108, 10.1021/bi200427h Rodrigues, 2013, Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein, Metab. Eng., 20, 29, 10.1016/j.ymben.2013.08.004 Rodrigues, 2014, Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol, Biotechnol. Bioeng., 111, 2280, 10.1002/bit.25297 Rodriguez, 2017, Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion, ACS Sustain. Chem. Eng., 5, 8171, 10.1021/acssuschemeng.7b01818 Rohles, 2016, Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate, Microb. Cell Fact., 15, 154, 10.1186/s12934-016-0553-0 Rohles, 2018, A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum, Green Chem., 20, 4662, 10.1039/C8GC01901K Rorrer, 2016, Renewable unsaturated polyesters from muconic acid, ACS Sustain. Chem. Eng., 4, 6867, 10.1021/acssuschemeng.6b01820 Rorrer, 2017, Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites, Green Chem., 19, 2812, 10.1039/C7GC00320J Rumbold, 2009, Microbial production host selection for converting second-generation feedstocks into bioproducts, Microb. Cell Fact., 8, 64, 10.1186/1475-2859-8-64 Rytter, 2014, Synthetic promoter libraries for Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 98, 2617, 10.1007/s00253-013-5481-x Sainsbury, 2013, Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1, ACS Chem. Biol., 8, 2151, 10.1021/cb400505a Saitoh, 2005, Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity, Appl. Environ. Microbiol., 71, 2789, 10.1128/AEM.71.5.2789-2792.2005 Salvachua, 2015, Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria, Green Chem., 17, 4951, 10.1039/C5GC01165E Sanderson, 2011, Lignocellulose: A chewy problem, Nature, 474, S12, 10.1038/474S012a Sankaran, 2019, Optoregulated drug release from an engineered living material: self-replenishing drug depots for fong-term, light-regulated delivery, Small, 15, e1804717, 10.1002/smll.201804717 Sauer, 2001, Evolutionary engineering of industrially important microbial phenotypes, Adv. Biochem. Eng. Biotechnol., 73, 129 Schmidt, 1984, Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria, Appl. Microbiol. Biotechnol., 20, 351, 10.1007/BF00270599 Schneider, 2010, Putrescine production by engineered Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 88, 859, 10.1007/s00253-010-2778-x Schuler, 2017, Hydrothermal liquefaction of lignin, Journal of Biomaterials and Nanobiotechnology, 8, 96, 10.4236/jbnb.2017.81007 Schutyser, 2018, Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev., 47, 852, 10.1039/C7CS00566K Schwechheimer, 2018, Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR, Metab. Eng., 47, 357, 10.1016/j.ymben.2018.04.005 Schwechheimer, 2018, Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions, Microb. Cell Fact., 17, 162, 10.1186/s12934-018-1003-y Schwille, 2018, MaxSynBio: Avenues Towards Creating Cells from the Bottom Up, Angewandte Chemie-International Edition, 57, 13382, 10.1002/anie.201802288 Shen, 2005, Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum, Sci. China C. Life Sci., 48, 241 Shen, 2005, Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum, Microb. Environ., 20, 160, 10.1264/jsme2.20.160 Shen, 2011, Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli, Appl. Environ. Microbiol., 77, 2905, 10.1128/AEM.03034-10 Shen, 2012, Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium?, Appl. Microbiol. Biotechnol., 95, 77, 10.1007/s00253-012-4139-4 Shi, 2017, Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment, Pro. Biochem., 52, 238, 10.1016/j.procbio.2016.10.004 Shin, 2016, Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid, Microb. Cell Fact., 15, 174, 10.1186/s12934-016-0566-8 Shrestha, 2017, Mechanistic insights into dye-decolorizing peroxidase revealed by solvent isotope and viscosity effects, ACS Catal., 7, 6352, 10.1021/acscatal.7b01861 Smith, 2010, Engineering Corynebacterium glutamicum for isobutanol production, Appl. Microbiol. Biotechnol., 87, 1045, 10.1007/s00253-010-2522-6 Sonoki, 2000, Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene, Appl. Environ. Microbiol., 66, 2125, 10.1128/AEM.66.5.2125-2132.2000 Sonoki, 2014, Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds, J. Biotechnol., 192, 71, 10.1016/j.jbiotec.2014.10.027 Sonoki, 2018, Glucose-free cis,cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin, ACS Sustain. Chem. Eng., 6, 1256, 10.1021/acssuschemeng.7b03597 Sparnins, 1975, Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases, J. Bacteriol., 124, 1374, 10.1128/jb.124.3.1374-1381.1975 Storch, 2017, BASIC: A Simple and Accurate Modular DNA Assembly Method, Methods Mol. Biol., 1472, 79, 10.1007/978-1-4939-6343-0_6 Suastegui, 2016, Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar, Angew. Chem. Int. Ed. Engl., 55, 2368, 10.1002/anie.201509653 Sugimoto, 2014, Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6, PLoS One, 9, 10.1371/journal.pone.0092249 Sutherland, 1983, Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii, Can. J. Microbiol., 29, 1253, 10.1139/m83-195 Takahashi, 2014, Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6, Biodegradation, 25, 735, 10.1007/s10532-014-9695-0 Takahashi, 2018, Two novel decarboxylase genes play a key role in the stereospecific catabolism of dehydrodiconiferyl alcohol in Sphingobium sp. strain SYK-6. Environ, Microbiol., 20, 1739 Tien, 1984, Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase, Proc. Natl. Acad. Sci., 81, 2280, 10.1073/pnas.81.8.2280 Tsuge, 2015, Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources, J. Ind. Microbiol. Biotechnol., 42, 375, 10.1007/s10295-014-1538-9 Tsuruta, 2009, High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli, PLoS One, 4, 10.1371/journal.pone.0004489 Ukibe, 2009, Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance, Appl. Environ. Microbiol., 75, 7205, 10.1128/AEM.01249-09 Van den Bosch, 2018, Catalytic Strategies Towards Lignin-Derived Chemicals, Top. Curr. Chem., 376, 36, 10.1007/s41061-018-0214-3 van Duuren, 2011, Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield, J. Biotechnol., 156, 163, 10.1016/j.jbiotec.2011.08.030 van Duuren, 2012, pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1, Biotechnol. Prog., 28, 85, 10.1002/btpr.709 Vardon, 2015, Adipic acid production from lignin, Energ. Environ. Sci. pp., 617-628 Vardon, 2016, cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization, Green Chem., 18, 3397, 10.1039/C5GC02844B Varman, 2018, Hybrid phenolic-inducible promoters towards construction of self-inducible systems for microbial lignin valorization, Biotechnol. Biofuels, 11, 182, 10.1186/s13068-018-1179-8 Vasudevan, 1990, Degradation of labelled lignins and veratrylglycerol-beta-guaiacyl ether by Acinetobacter sp, Ital. J. Biochem., 39, 285 Vasudevan, 1992, Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp, Res. Microbiol., 143, 333, 10.1016/0923-2508(92)90025-J Vignali, 2018, Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity, Appl. Microbiol. Biotechnol., 102, 10579, 10.1007/s00253-018-9409-3 Vyas, 2018, Biomass breakdown: A review on pretreatment, instrumentations and methods, Front. Biosci., 10, 155, 10.2741/e815 Wahyudiono Sasaki, 2011, Thermal decomposition of guaiacol in sub- and supercritical water and its kinetic analysis, J. Mater. Cycles Waste, 13, 68, 10.1007/s10163-010-0309-6 Wang, 2012, Structural transformation of hemicelluloses and lignin from triploid poplar during acid-pretreatment based biorefinery process, Bioresour. Technol., 116, 99, 10.1016/j.biortech.2012.04.028 Wang, 2018, Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis, Nat. Commun., 9, 1579, 10.1038/s41467-018-03863-z Wang, 2018, Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution, Appl. Microbiol. Biotechnol., 102, 377, 10.1007/s00253-017-8627-4 Wang, 2018, Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing, Appl. Environ. Microbiol., 84, 10.1128/AEM.01469-18 Weber, 2005, Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity, J. Bacteriol., 187, 1591, 10.1128/JB.187.5.1591-1603.2005 Weber, 2017, Requirement of a functional flavin mononucleotide prenyltransferase for the activity of a bacterial decarboxylase in a heterologous muconic acid pathway in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 83, 10.1128/AEM.03472-16 Wei, 2015, Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069, Green Chem., 17, 2784, 10.1039/C5GC00422E Wengel, 2006, Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase, The Science of the total environment, 367, 383, 10.1016/j.scitotenv.2005.12.012 White, 2015, UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis, Nature, 522, 502, 10.1038/nature14559 Wittmann, 2002, Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria, Appl. Environ. Microbiol., 68, 5843, 10.1128/AEM.68.12.5843-5859.2002 Wittmann, 2002, Metabolic physiology of aroma-producing Kluyveromyces marxianus, Yeast, 19, 1351, 10.1002/yea.920 Wittmann, 2004, Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source, Appl. Environ. Microbiol., 70, 7277, 10.1128/AEM.70.12.7277-7287.2004 Wu, 2013, Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation, Bioresour. Technol., 139, 5, 10.1016/j.biortech.2013.03.103 Wu, 2006, Microbial synthesis of cis,cis-muconic acid from benzoate by Sphingobacterium sp mutants, Biochem. Eng. J., 29, 35, 10.1016/j.bej.2005.02.034 Wu, 2018, Toward engineering E. coli with an autoregulatory system for lignin valorization, Proc. Natl. Acad. Sci., 115, 2970, 10.1073/pnas.1720129115 Xiao, 2018, Distinct proteome remodeling of industrial Saccharomyces cerevisiae in response to prolonged thermal stress or transient heat shock, J. Proteome Res., 17, 1812, 10.1021/acs.jproteome.7b00842 Xie, 2014, Optimization of medium composition for cis,cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods, Prep. Biochem. Biotechnol., 44, 342, 10.1080/10826068.2013.829497 Xu, 2014, Lignin depolymerisation strategies: towards valuable chemicals and fuels, Chem. Soc. Rev., 43, 7485, 10.1039/C4CS00235K Xu, 2018, Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains, Environ. Sci. Pollut. Res. Int., 25, 14171, 10.1007/s11356-018-1633-y Xu, 2019, Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis, World J. Microbiol. Biotechnol., 35, 33, 10.1007/s11274-019-2606-0 Yim, 2013, Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum, Biotechnol. Bioeng., 110, 2959, 10.1002/bit.24954 Yim, 2016, Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum, Biotechnol. Bioeng., 113, 163, 10.1002/bit.25692 Yoneda, 2016, Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630, Nucleic Acids Res., 44, 2240, 10.1093/nar/gkw055 York-Duran, 2017, Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles, Colloid. Surface B., 152, 199, 10.1016/j.colsurfb.2017.01.014 Yoshida, 2010, Regioselective carboxylation of catechol by 3,4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P, Biotechnol. Lett., 32, 701, 10.1007/s10529-010-0210-3 Yoshikata, 2014, Three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6, Appl. Environ. Microbiol., 80, 7142, 10.1128/AEM.02236-14 Yu, 2014, Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli, Biotechnol. Bioeng., 111, 2580, 10.1002/bit.25293 Zhang, 2015, Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum, Microb. Cell Fact., 14, 71, 10.1186/s12934-015-0254-0 Zhao, 2016, Synergistic enzymatic and microbial lignin conversion, Green Chem., 18, 1306, 10.1039/C5GC01955A Zhou, 2015, Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum, ACS Synth. Biol., 4, 729, 10.1021/sb500332c Zhou, 2014, Optimization of manganese peroxidase production from Schizophyllum sp. F17 in solid-state fermentation of agro-industrial residues, Chin. J. Biotechnol., 30, 524