A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, W.J., R.A. Kimerle & R. G. Mosher, 1985. Aquatic safety assessment of chemicals sorbed to sediments. In: R.D. Cardwell, R. Purdy and R.G. Bahner (eds),Aquatic toxicology and hazard assessment: Seventh symposium. STP 854. American Society for Testing and Materials, Philadelphia, PA, pp. 429?453.
Allen, H.S., G. Fu & B. Deng, 1993. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM) for the estimation of potential toxicity in aquatic sediments. Environ. Toxicol. Chem. 12: 1441?1453.
Ankley, G.T. & M.K. Schubauer-Berigan, 1994. Comparison of techniques for the isolation of pore water for sediment toxicity testing. Arch. Environ. Contam. Toxicol. 27: 507?512.
Ankley, G.T., G.L. Phipps, E.N. Leonard, D.A. Benoit, V.R. Mattson, P.A. Kosian, A.M. Cotter, J.R. Dierkes, D.J. Hansen & J.D. Mahony, 1991. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ. Toxicol. Chem. 10: 1299?1307.
Ankley, G.T., R.A. Hoke, D.A. Benoit, E.M. Leonard, C.W. West, G.L. Phipps, V.R. Mattson & L.A. Anderson, 1993. Development and evaluation of test methods for benthic invertebrates and sediments: Effects of flow rate and feeding on water quality and exposure conditions. Arch. Environ. Contam. Toxicol. 25: 12?19.
Ankley, G.T., N.A. Thomas, D.M. Di Toro, D.J. Hansen, J.D. Mahony, W.J. Berry, R.C. Swartz & R.A. Hoke, 1994. Assessing potential bioavailability of metal in sediments: A proposed approach. Environ. Manage. 18: 331?337.
Ankley, G.T., D.M. Di Toro, D.J. Hansen & W.J. Berry, 1996. Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem. In Press.
Benoit, D.A., G.L. Phipps & G.T. Ankley, 1993. A sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments. Water Res. 27: 403?1412.
Berry, W.J., D.J. Hansen, J.D. Mahony, D.L. Robson, D.M. Di Toro, B.J. Shipley, B. Rogers & J.M. Corbin, 1996. Predicting the toxicity of metals-spiked laboratory sediments using acid volatile sulfide and interstitial water normalizations. Environ. Toxicol. Chem. In Press.
Besser, J.M., C.G. Ingersoll & J.P. Giesy, 1996. Effects of spatial and temporal variability of acid volatile sulfide on the bioavailability of copper and zinc in freshwater sediments. Environ. Toxicol. Chem. 15: 286?293.
Brumbaugh, W.G., C.G. Ingersoll, N.E. Kemble, T.W. May & J.L. Zajicek, 1994. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana. Environ. Toxicol. Chem. 13: 1971?1983.
Carlson, A.R., G.L. Phipps, V.R. Mattson, P.A. Kosian & A.M. Cotter, 1991. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environ. Toxicol. Chem. 10: 1309?1319.
Casas, A.M. & E.A. Crecelius, 1994. Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environ. Toxicol. Chem. 13: 529?536.
Cornwell, J.C. & J.W. Morse, 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Mar. Chem. 22: 193?206.
De Witt, T.H., R.C. Swartz, D.J. Hansen, W.J. Berry & D. McGovern, 1996. Interstitial metal and acid volatile sulfide predict the bioavailability of cadmium during a full life cycle sediment toxicity test using the estuarine amphipod,Leptocheirus plumulosus. Environ. Toxicol. Chem. In Press.
Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, M.B. Hicks, S.M. Mayr & M.S. Redmond, 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environ. Toxicol. Chem. 9: 1487?1502.
Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas & P.R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10: 1541?1583.
Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, A.R. Carlson & G.T. Ankley, 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 26: 96?101.
Di Toro, D.M., J.D. Mahony, D.J. Hansen & W.J. Berry, 1996. A model of the oxidation of iron and other metal sulfides in sediments. Environ. Toxicol. Chem. In Press.
Hamilton, M.A., R. C. Russo & R. V. Thurston, 1977. Trimmed Spearman-Karber technique for estimating median lethel concentrations in toxicity bioassays. Environ. Sci. Technol. 7: 714?719. Correction 12: 417 (1978).
Hansen, D.J., W.J. Berry, J. D. Mahony, W. S. Boothman, D. L. Robson, G.T. Ankley, D. Ma, Q. Yan & C.E. Pesch, 1996a. Predicting toxicity of metal-contaminated field sediments using interstitial water concentrations of metals and acid-volatile sulfide normalization. Environ. Toxicol. Chem. In Press.
Hansen, D.J., J.D. Mahony, W.J. Berry, S.J. Benyi, J.M. Corbin, S.D. Pratt & M.B. Able, 1996b. Chronic effect of cadmium in sediments on colonization by benthic marine organisms: An evaluation of the role of interstitial cadmium and acid volatile sulfide on biological availability. Environ. Toxicol. Chem. In Press.
Hare, L., R. Carignan & M.A. Huerta-Diaz, 1994. A field study of metal toxicity and accumulation by benthic invertebrates: Implications for the acid-volatile sulfide (AVS) model. Limnol. Oceanogr. 39: 1653?1668.
Herlihy, A.T. & A.L. Mills, 1985. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl. Environ. Microbiol. 49: 179?186.
Howard, D.E. & R.D. Evans, 1993. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: Seasonal and spatial changes in sediment AVS. Environ. Toxicol. Chem. 12: 1051?1057.
Leonard, E.N., V.R. Mattson, D.A. Benoit, R.A. Hoke & G.T. Ankley, 1993. Seasonal variation of acid volatile sulfide in sediment cores from three northeastern Minnesota lakes. Hydrobiologia 271: 87?95.
Leonard, E.N., G.T. Ankley & R.A. Hoke, 1996. Evaluation of metal concentrations in marine and freshwater surficial sediments from the Environmental Monitoring and Assessment Program relative to proposed sediment quality criteria for metals. Environ. Toxicol. Chem. In Press.
Liber, K., D. Call, T. Markee, K. Schmude, M. Balcer, F. Whiteman & G. T. Ankley, 1996. Effects of acid volatile sulfide on zinc bioavailability and toxicity to benthic macroinvertebrates in spiked-sediment field experiments. Environ. Toxicol. Chem. In Press.
Luoma, S.N. & J.L. Carter, 1993. Understanding the toxicity of contaminants in sediments: Beyond the bioassay-based paradigm. Environ. Toxicol. Chem. 12: 793?796.
Meyer, J. S., W. Davison, B. Sundby, J.T. Oris, D.J. Lauren, U. Förstner, J. Hong & D.G. Crosby, 1994. The effects of variable redox potentials, pH and light on bioavailability in dynamic water-sediment environments. In: J.L. Hamelink, P.F. Landrum, H.L. Bergman & W.H. Benson (eds),Bioavailabllity: Physical, Chemical and Biological Interactions. CRC Press, Boca Raton, FL, pp. 155?170.
Pesch, C.E., D.J. Hansen, W.S. Boothman, W.J. Berry & J.D. Mahony, 1995. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaeteNeanthes arenaceodentata. Environ. Toxicol. Chem. 14: 129?141.
Peterson, G.S., G.T. Ankley & E.N. Leonard, 1995. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. Environ. Toxicol. Chem. In Press.
Phipps, G.L., V.R. Mattson & G.T. Ankley, 1995. Relative sensitivity of three freshwater benthic invertebrates to ten contaminants. Arch. Environ. Contam. Toxicol. 28: 281?286.
Sibley, P.K., G.T. Ankley, A.M. Cotter & E.N. Leonard, 1996. Predicting chronic toxicity of sediments spiked with zinc: An evaluation of the acid volatile sulfide (AVS) model using a life cycle test with the midgeChironomus tentans. Environ. Toxicol. Chem. In Press.
Slotton, D.G. & J.E. Reuter, 1995. Heavy metals in intact and resuspended sediments of a California reservoir, with emphasis on potential bioavailability of copper and zinc. Mar. Freshwater Res. 46: 257?265.