A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures

Nature Materials - Tập 10 Số 8 - Trang 625-630 - 2011
Myung‐Jae Lee1, Chang Bum Lee1, Dongsoo Lee1, Seung Ryul Lee1, Man Chang1, Ji Hyun Hur1, Young‐Bae Kim1, Changjung Kim1, David H. Seo1, Sunae Seo2, U‐In Chung1, In-Kyeong Yoo1, Kinam Kim3
1Semiconductor Device Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do 446-712, Korea
2Department of Physics, Sejong University, Seoul 143?747, Korea
3Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do 446-712, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nature Mater. 5, 383–387 (2006).

Setter, N. et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

Liu, H. et al. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97, 242510 (2010).

Moller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).

Lee, M-J. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).

International Technology Roadmap for Semiconductors: 2009 Edition—Emerging Research Devices (ITRS, 2009); available via http://go.nature.com/87GMpF.

Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

Lee, M-J. et al. A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73–76 (2007).

Ahn, S-E. et al. Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924–928 (2008).

Fujimoto, M. et al. TiO2 anstase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Appl. Phys. Lett. 89, 223509 (2006).

Baek, I. G. et al. Highly scalable non-volatile memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEEE Int. Electron Dev. Meet. Tech. Dig. 04, 587–590 (2004).

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

Lee, M. J. et al. Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory. J. Appl. Phys. 103, 013706 (2008).

Zhang, L. Unipolar TaOx-based resistive change memory realized with electrode engineering. IEEE Electron Dev. Lett. 31, 966–968 (2010).

Seo, S. et al. Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004).

Hur, J. H. et al. Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B 82, 155321 (2010).

Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nature Mater. 9, 403–406 (2010).

Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010).

Yoshida, C., Kinoshita, K., Yamasaki, T. & Sugiyama, Y. Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008).

Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006).

Kim, K. M. & Hwang, C. S. The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl. Phys. Lett. 94, 122109 (2009).

Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).

Wei, Z. et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. IEEE Int. Electron Dev. Meet. Tech. Dig. 293, 5671467 (2008).

Rosezin, R. et al. Integrated complementary resistive switches for passive high-density nanocrossbar arrays. IEEE Electron Dev. Lett. 32, 191–193 (2011).

Goux, L. et al. Evidences of oxygen-mediated resistive-switching mechanism in TiN/HfO2/Pt cells. Appl. Phys. Lett. 97, 243509 (2010).

Lee, S-Y. et al. Polycrystalline silicon–germanium heating layer for phase-change memory applications. Appl. Phys. Lett. 89, 053517 (2006).

Zheng, J. F. et al. MOCVD Ge3Sb2Te5 for PCM applications. IEEE Electron Dev. Lett. 31, 999–1001 (2010).