Một họ các chuẩn tương đương cho không gian Lebesgue

Springer Science and Business Media LLC - Tập 116 - Trang 179-192 - 2020
Alberto Fiorenza1,2, Pankaj Jain3
1Dipartimento di Architettura, Università di Napoli Federico II, Naples, Italy
2Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli, Consiglio Nazionale delle Ricerche, Naples, Italy
3Department of Mathematics, South Asian University, Akbar Bhawan, Chanakya Puri, India

Tóm tắt

Nếu $$\psi :[0,\ell ]\rightarrow [0,\infty [$$ hoàn toàn liên tục, không giảm và thỏa mãn $$\psi (\ell )>\psi (0)$$, và $$\psi (t)>0$$ cho $$t>0$$, thì đối với $$f\in L^1(0,\ell )$$, chúng ta có $$\begin{aligned} \Vert f\Vert _{1,\psi ,(0,\ell )}:=\int \limits _0^\ell \frac{\psi '(t)}{\psi (t)^2}\int \limits _0^tf^*(s)\psi (s)dsdt\approx \int \limits _0^\ell |f(x)|dx=:\Vert f\Vert _{L^1(0,\ell )},\quad (*) \end{aligned}$$, trong đó hằng số trong $$ > rsim $$ phụ thuộc vào $$\psi $$ và $$\ell $$. Ở đây, $$f^*$$ được sử dụng để biểu thị phép sắp xếp giảm của f. Khi áp dụng với f thay bằng $$|f|^p$$, $$1

Từ khóa


Tài liệu tham khảo

Ahmed, I., Fiorenza, A., Formica, M.R., Gogatishvili, A., Rakotoson, J.M.: Some new results related to Lorentz G\(\Gamma \)-spaces and interpolation. J. Math. Anal. Appl. 483, 123623 (2020) Bennett, C., Rudnik, K.: On Lorentz-Zygmund spaces. Dissertationes Math. (Rozrrawy Mat.) 175 (1980) Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988) Carothers, N.L.: Real Analysis. Cambridge University Press, Cambridge (2000) DiBenedetto, E.: Real Analysis. Birkhäuser Advanced Texts. Birkhäuser, Boston (2002) Fabricant, A., Kutev, N., Rangelov, T.: Hardy-type inequalities with weights. Serdica Math. J. 41, 493–512 (2015) Fiorenza, A., Formica, M.R., Gogatishvili, A., Kopaliani, T., Rakotoson, J.M.: Characterization of interpolation between grand, small or classical Lebesgue spaces. Nonlinear Anal. 177, 422–453 (2018) Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces. Stud. Math. 188(2), 123–133 (2008) Fiorenza, A., Gupta, B., Jain, P.: Mixed norm type Hardy inequalities. Can. Math. Bull. 54(4), 630–644 (2011) Fiorenza, A., Rakotoson, J.M.: Some estimates in G\(\Gamma (p, m, w)\) spaces. J. Math. Anal. Appl. 340, 793–805 (2008) Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952) Imoru, C.O.: On some integral inequalities related to Hardy’s. Can. Math. Bull. 20(3)(1), 307–312 (1977) Jain, P., Gupta, B., Verma, D.: Mean inequalities in certain Banach function spaces. J. Math. Anal. Appl. 334(1), 358–367 (2007) Jain, P., Kanjilal, S., Persson, L.-E.: Hardy-type inequalities over balls in \({{\mathbb{R}}}^N\) for some bilinear and iterated operators. J. Inequal. Spec. Funct. 10(2), 35–48 (2019) Jain, P., Kanjilal, S., Stepanov, V.-D., Ushakova, E.P.: Bilinear Hardy–Steklov operators. Math. Notes 104(5–6), 823–832 (2018) Jain, P., Singh, M., Singh, A.P.: Weighted norm inequalities for Hardy type operators on monotone functions. In: Function Spaces in Analysis. Contemporary Mathematics, vol. 645, pp. 145–160. Amer. Math. Soc, Providence, RI (2015) Jain, P., Singh, M., Singh, A.P.: Hardy-type integral inequalities for quasi-monotone functions. Georgian Math. J. 24(4), 523–533 (2017) Klebaner, F.C.: Introduction to Stochastic Calculus with Applications, 3rd edn. Imperial College Press, London (2012) Kufner, A., Maligranda, L., Persson, L.E.: The Hardy inequality. About its History and Some Related Results. Vydavatelský Servis, Pilsen (2007) Kufner, A., Maligranda, L., Persson, L.E.: The prehistory of the Hardy inequality. Amer. Math. Mon. 113(8), 715–732 (2006) Kufner, A., Persson, L.E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn. World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ (2017) Kutev, N., Rangelov, T.: Hardy inequalities with double singular weights. arXiv:2001.07368v2 (2020) Levinson, N.: Generalizations of an inequality of Hardy. Duke Math. J. 31(3), 389–394 (1964) Maligranda, L.: Generalized Hardy inequalities in rearrangement invariant spaces. J. Math. Pures Appl. (9) 59(4), 405–415 (1980) Maligranda, L.: A generalization of the Shimogaki theorem. Stud. Math. 71(1), 69–83 (1981/1982) Maligranda, L.: On Hardy’s inequality in weighted rearrangement invariant spaces and applications. I, II. Proc. Amer. Math. Soc. 88(1), 67–74, 75–80 (1983) Maligranda, L.: Indices and interpolation. Dissertationes Math. (Rozprawy Mat.) 234 (1985) Maligranda, L.: Orlicz spaces and interpolation. Seminários de Matemática [Seminars in Mathematics], vol. 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989) Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indag. Math. 52, 323–338 (1989) Opic, B., Kufner, A.: Hardy-Type Inequalities. Longman, Harlow (1990) Pachpatte, B.G., Love, E.R.: On some new inequalities related to Hardy’s integral inequality. J. Math. Anal. Appl. 149, 17–25 (1990) Persson, L.E., Samko, N.: What should have happened if Hardy had discovered this? J. Ineq. Appl. 2012, 29 (2012) Tian, J., Zhou, Y.-X.: Refinements of Hardy-type inequalities. Abstr. Appl. Anal. ArticleID 727923 (2013)