A family of edge-transitive Cayley graphs

Springer Science and Business Media LLC - Tập 49 Số 2 - Trang 147-167 - 2019
Jiangmin Pan1, Zhaofei Peng1
1School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alspach, B.: Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree. J. Comb. Theory Ser. B 15, 12–17 (1973)

Alspach, B., Marušič, D., Nowitz, L.: Constructing graphs which are $$1/2$$-transitive. J. Austral. Math. Soc. Ser. A 56(3), 391–402 (1994)

Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, New York (1992)

Bouwer, A.E.: Vertex and edge-transitive but not 1-transitive graphs. Can. Math. Bull. 13, 231–237 (1970)

Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)

Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247–256 (1971)

Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory Ser. B 42, 196–211 (1987)

Conder, M.D.E., Marušič, D.: A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer. J. Comb. Theory Ser. B 88, 67–76 (2003)

Ding, S.Y., Ling, B., Lou, B.G., Pan, J.M.: Pentavalent symmetric graphs of square-free order. Graphs Comb. 32, 2355–2366 (2016)

Dixon, J., Mortimer, B.: Permutation Groups. Springer, New York (1996)

Feng, Y.-Q., Kwak, J.H.: Constructing an infinite family of cubic 1-regular graphs. European J. Combin. 23(5), 559–565 (2002)

Frucht, R.: A one-regular graph of degree three. Can. J. Math. 4, 240–247 (1952)

Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981)

Hammack, R., Imrich, W., Klavžar, S.: Edge-transitive products. J. Algebraic Combin. 43(4), 837–850 (2016)

Li, C.H.: On isomorphisms of connected Cayley graphs. Discrete Math. 178, 109–122 (1998)

Li, C.H., Pan, J.M., Song, S.J., Wang, D.J.: A characterization of a family of edge-transitive metacirculant graphs. J. Comb. Theory Ser. B 107, 12–25 (2014)

Li, C.H., Lu, Z.P., Wang, G.X.: The vertex-transitive and edge-transitive tetravalent graphs of square-free order. J. Algebraic Combin. 42(1), 25–50 (2015)

Li, C.H., Lu, Z.P., Wang, G.X.: On edge-transitive graphs of square-free order. Electr. J. Comb. 22(3), 3–25 (2015)

Li, C.H., Lu, Z.P., Wang, G.X.: Arc-transitive graphs of square-free order and small valency. Discrete Math. 339, 2907–2918 (2016)

Liu, G.X., Lu, Z.P.: On edge-transitive cubic graphs of square-free order. European J. Combin. 45, 41–46 (2015)

Marušič, D.: A family of one-regular graphs of valency 4. European J. Combin. 18(1), 59–64 (1997)

Marušič, D.: Recent developments in half-transitive graps. Discrete Math. 182, 219–231 (1998)

Marušič, D., Šparl, P.: One-regular graphs and half-transitive graphs of valency 4. European J. Combin. 19, 345–354 (1998)

Marušič, D.: On 2-arc-transitivity of Cayley graphs. J. Comb. Theory Ser. B 87, 162–196 (2003)

Pan, J.M.: Locally primitive Cayley graphs of dihedral groups. European J. Combin. 36, 39–52 (2014)

Praeger, C.E., Xu, M.Y.: Vertex-primitive graphs of order a product of two distinct primes. J. Comb. Theory Ser. B 59, 245–266 (1993)

Praeger, C.E., Wang, R.J., Xu, M.Y.: Symmetric graphs of order a product of two distinct primes. J. Comb. Theory Ser. B 58, 299–318 (1993)

Suzuki, M.: Group Theroy II. Springer, New York (1985)

Wang, R.J., Xu, M.Y.: A classification of symmetric graphs of order $$3p$$. J. Comb. Theory Ser. B 58, 197–216 (1993)

Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)