Một phương pháp đơn giản để chuẩn bị bông phủ graphene và ứng dụng của nó cho pin lithium

Springer Science and Business Media LLC - Tập 20 - Trang 1251-1261 - 2016
Xueqian Zhang1, Xiaoxiao Huang1, Xiaodong Zhang1, Bo Zhong2, Long Xia2, Jing Liu1, Hong Pan1, Guangwu Wen2
1School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China
2School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, China

Tóm tắt

Các vật liệu điện cực tự đứng và không cần chất kết dính, composites bông/graphene (CGN) đã được chế tạo thông qua quy trình "nhúng và sấy đông" đơn giản, sử dụng bông thô làm thân hỗ trợ và graphene oxide (GO) làm dung dịch huyền phù. Sau đó, các composites bông/GO (CGO) được tôi ở 1000 °C dưới điều kiện khí Ar để thu được composites CGN. Kết quả cho thấy cấu trúc CGN có thể bảo vệ khung bông và có tính ổn định nhiệt tốt hơn so với bông đơn thuần. Các thí nghiệm sạc-xả tĩnh điện đã chứng minh rằng nồng độ GO có ảnh hưởng lớn đến hiệu suất điện hóa của chúng. CGN (đối với GO với 3 và 5 mg ml−1) cung cấp khả năng xả lặp lại là 160 mAh g−1 sau 100 chu kỳ, cao hơn khoảng 1.5 lần so với bông đơn thuần (115 mAh g−1 sau 100 chu kỳ). Các đặc tính điện hóa xuất sắc của CGN có thể được liên kết với cấu trúc có thể kiểm soát với nhiều vị trí lưu trữ ion lithium hơn, độ dẫn điện cao và tốc độ khuếch tán ion nhanh. Kết quả này gợi ý rằng công trình này phát triển một phương pháp sản xuất quy mô lớn đơn giản, rẻ tiền và phù hợp cho pin lithium-ion.

Từ khóa

#bông #graphene #composites #pin lithium-ion #hiệu suất điện hóa

Tài liệu tham khảo

Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245 Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050 Wang X, Weng Q, Liu X, Wang X, Tang DM, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett 14:1164–1171 Li B, Zai J, Xiao Y, Han Q, Qian X (2014) SnO2/C composites fabricated by a biotemplating method from cotton and their electrochemical performances. CrystEngComm 16:3318 Jiang Z, Pei B, Manthiram A (2013) Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. J Mater ChemA 1:7775 Chang J, Huang X, Zhou G, Cui S, Hallac PB, Jiang J, Hurley PT, Chen J (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764 Miao L, Wang W, Yuan K, Yang Y, Wang A (2014) A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. Chem Commun 50:13231–13234 Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307 Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24:1089–1094 Xue J, Zhao Y, Cheng H, Hu C, Hu Y, Meng Y, Shao H, Zhang Z, Qu L (2013) An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys Chem Chem Phys 15:8042–8045 Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458 Cardador MJ, Paparizou E, Gallego M, Stalikas C (2014) Cotton-supported graphene functionalized with aminosilica nanoparticles as a versatile high-performance extraction sorbent for trace organic analysis. J Chromatogr A 1336:43–51 Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655 Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494 Ai W, Du Z, Fan Z, Jiang J, Wang Y, Zhang H, Xie L, Huang W, Yu T (2014) Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon 76:148–154 Lv W, Sun F, Tang D-M, Fang H-T, Liu C, Yang Q-H, Cheng H-M (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21:9014 Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338 Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4Anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313 Guo CX, Wang M, Chen T, Lou XW, Li CM (2011) A hierarchically nanostructured composite of MnO2/Conjugated polymer/graphene for high-performance lithium ion batteries. Adv Energy Mater 1:736–741 Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194 Kim H, Kim S-W, Park Y-U, Gwon H, Seo D-H, Kim Y, Kang K (2010) SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res 3:813–821 Zhou X, Yin YX, Wan LJ, Guo YG (2012) Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun 48:2198–2200 Juanjuan Z, Ruiyi L, Zaijun L, Junkang L, Zhiguo G, Guangli W (2014) Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale 6:5458–5466 Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339 Wimalasiri Y, Zou L (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471 Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240 Nguyen ST, Nguyen HT, Rinaldi A, Nguyen NPV, Fan Z, Duong HM (2012) Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications. Colloids Surf A Physicochem Eng Asp 414:352–358 Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High surface area tapes produced with functionalized graphene. ACS Nano 5:5214–5222 Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J, Kim S-J (2011) Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl Nanosci 2:119–126 Hertel T, Walkup R, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870–13873 Adebajo MO, Frost RL (2004) Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochimica acta. Part A, Mol Biomol Spectrosc 60:2315–2321 Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X, Lu X, Sun L, Zhang H (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25:5916–5921 Zhang M, Gao B, Li Y, Zhang X, Hardin IR (2013) Graphene-coated pyrogenic carbon as an anode material for lithium battery. Chem Eng J 229:399–403 Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241 Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560 Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–1713 Xu Z, Zhang Y, Li P, Gao C (2012) Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6:7103–7113 Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A Physicochem Eng Asp 296:76–85 Abrasonis G, Gago R, Vinnichenko M, Kreissig U, Kolitsch A, Möller W (2006) Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study. Physical Review B 73 Liu H, Zhang L, Guo Y, Cheng C, Yang L, Jiang L, Yu G, Hu W, Liu Y, Zhu D (2013) Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. J Mater Chem C 1:3104 Ferrari A, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64 Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291 Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41 Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572 Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638 Levi MD, Aurbach D (1997) The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J Electroanal Chem 421:79–88 Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources 68:91–98 Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391 Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852 Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975 Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52:1472–1476 Jin B, Gu H-B, Kim K-W (2007) Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries. J Solid State Electrochem 12:105–111 Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S (2014) High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources 270:28–33