A face recognition application for Alzheimer’s patients using ESP32-CAM and Raspberry Pi

Thair A. Kadhim1, Walid Hariri2, Nadia Smaoui Zghal3, Dalenda Ben Aissa1
1Microwave Electronics Research Laboratory, Faculty of Sciences of Tunis, Tunis El-Manar University, Tunis, Tunisia
2Labged Laboratory, Computer Science Department, Badji Mokhtar Annaba University, Annaba, Algeria
3Control and Energy Management Laboratory (CEM Lab), ENIS Sfax, Tunis, Tunisia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lin, Z.H., Li, Y. Z.: Design and Implementation of Classroom Attendance System Based on Video Face Recognition. In: Proc. - 2019 Int. Conf. Intell. Transp. Big Data Smart City, ICITBS 2019, pp 385–388, (2019), doi: https://doi.org/10.1109/ICITBS.2019.00101

Chuo, Y. H., Sheu, R. K., Chen, L. C.: Design and implementation of a cross-camera suspect tracking system. In: 2019 Int. Autom. Control Conf. CACS 2019, pp. 1–6, (2019)https://doi.org/10.1109/CACS47674.2019.9024367

Teixeira, E.H., Mafra, S.B., Rodrigues, J.J.P.C., Da Silveira, W.A.A.N., Diallo, O.: A review and construction of a real-time facial recognition system. Inst. Nac. Telecomun. (2020). https://doi.org/10.5753/sbcup.2020.11225

Almabdy, S., Elrefaei, L.: Deep convolutional neural network-based approaches for face recognition. Appl. Sci. (2019). https://doi.org/10.3390/app9204397

Boufenar, C., Kerboua, A., Batouche, M.: Investigation on deep learning for off-line handwritten Arabic character recognition. Cogn. Syst. Res. 50, 180–195 (2018). https://doi.org/10.1016/j.cogsys.2017.11.002

Ho, H.T., Chellappa, R.: Pose-invariant face recognition using Markov random fields. IEEE Trans. Image Process. 22(4), 1573–1584 (2013). https://doi.org/10.1109/TIP.2012.2233489

Phillips, P. J. et al.: Overview of the face recognition grand challenge. In: Proc. - 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, CVPR 2005, vol. I, pp. 947–954, (2005), https://doi.org/10.1109/CVPR.2005.268

Hariri, W., Tabia, H., Farah, N., Benouareth, A., Declercq, D.: 3D face recognition using covariance based descriptors. Pattern Recognit. Lett. 78, 1–7 (2016). https://doi.org/10.1016/j.patrec.2016.03.028

Martikainen, K., Said, K.: A facial recognition application for elderly care: caregiver verification and identification. KTH R. Inst. Technol. Sch. Electr. Eng. Comput. Sci., (2018), http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1252357&dswid=5861

Bakhshi, Y., Kaur, S., Verma, P.: A study based on various face recognition algorithms. Int. J. Comput. Appl. 129(13), 16–20 (2015). https://doi.org/10.5120/ijca2015907066

Sanchez-Moreno, A.S., Olivares-Mercado, J., Hernandez-Suarez, A., Toscano-Medina, K., Sanchez-Perez, G., Benitez-Garcia, G.: Efficient face recognition system for operating in unconstrained environments. J. Imaging (2021). https://doi.org/10.3390/jimaging7090161

de Sousa-Britto-Neto, L., Maike, V.R.M.L., Koch, F.L., Baranauskas, M.C.C., Rocha, A.D.R., Goldenstein, S.K.: A wearable face recognition system built into a smartwatch and the blind and low vision users. Lect. Notes Bus. Inf. Process. 241(December), 515–528 (2015). https://doi.org/10.1007/978-3-319-29133-8_25

Zhang, Y.: A computational model of quantitatively measuring the Alzheimer’s disease progression in face identification. Electron. Sci. Technol. Appl. 6(1), 29–33 (2019). https://doi.org/10.18686/esta.v6i1.93

Aljojo, N., et al.: Alzheimer assistant: a mobile application using machine learning. Rev. Română Inform. Autom. 30(4), 7–26 (2020). https://doi.org/10.33436/v30i4y202001

Timeless, “Timeless,” (2019) https://kale-clavichord-7blm.squarespace.com/

Salman, H.M., Rasheed, R.T.: Smart door for handicapped people via face recognition and voice command technique. Eng. Technol. J. 39(1B), 222–230 (2021). https://doi.org/10.30684/etj.v39i1b.1719

Wazwaz, A. A., Herbawi, A. O., Teeti, M. J., Hmeed, S. Y.: Raspberry Pi and computers-based face detection and recognition system. In: 2018 4th Int. Conf. Comput. Technol. Appl. ICCTA 2018, pp. 171–174, (2018)https://doi.org/10.1109/CATA.2018.8398677

Raju, K., Srinivasa-Rao, Y.: Real time implementation of face recognition system on Raspberry Pi. Int. J. Eng. Technol. 7(2), 85–89 (2018). https://doi.org/10.14419/ijet.v7i2.17.11564

Lee, S. J., Jung, S. B., Kwon, J. W., Hong, S. H.: Face detection and recognition using PCA. In: IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 1, no. December, pp. 84–87, (1999) https://doi.org/10.1109/TENCON.1999.818355

Umm-E-Laila, Khan, M. A., Shaikh, M. K., Bin Mazhar, S. A., Mehboob, K.: Comparative analysis for a real time face recognition system using raspberry Pi. In: 2017 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2017, vol. 2017-Novem, no. November, pp. 1–4. (2018) https://doi.org/10.1109/ICSIMA.2017.8311984

Wankhede, V., Mule, G., Londhe, R., Tarale, A., Gome, S.: Criminal face recognition using Raspberry Pi. Int. Res. J. Innov. Eng. Technol. 3(12), 1–3 (2019)

Kaur, A., Jadli, A., Sadhu, A., Goyal, S., Mehra, A., Rahul.: Cloud based surveillance using ESP32 CAM. In: Int. Conf. Intell. Technol. Syst. Serv. Internet Everything, ITSS-IoE 2021, no. April 2022, (2021) https://doi.org/10.1109/ITSS-IoE53029.2021.9615334

Dani, P., Adi, P., Wahyu, Y.: Performance evaluation of ESP32 Camera face recognition for various projects. ASCEE, Indones. 02(June), 1 (2021). https://doi.org/10.31763/iota.v2i1.512

Allafi, I., Iqbal, T.: Design and implementation of a low cost web server using ESP32 for real-time photovoltaic system monitoring. In: 2017 IEEE Electr. Power Energy Conf. EPEC 2017, vol. 2017-Octob, no. May 2022, pp. 1–5, (2018) https://doi.org/10.1109/EPEC.2017.8286184

Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vairo, C.: Facial-based intrusion detection system with deep learning in embedded devices. In: ACM Int. Conf. Proceeding Ser., pp. 64–68, (2018) https://doi.org/10.1145/3290589.3290598

Januzaj, Y., Luma, A., Januzaj, Y., Ramaj, V.: Real time access control based on face recognition. November, (2015) https://doi.org/10.15242/iae.iae0615004

Syafeeza, A.R., Mohd-Fitri-Alif, M.K., Nursyifaa-Athirah, Y., Jaafar, A.S., Norihan, A.H., Saleha, M.S.: IoT based facial recognition door access control home security system using raspberry pi. Int. J. Power Electron. Drive Syst. 11(1), 417–424 (2020). https://doi.org/10.11591/ijpeds.v11.i1.pp417-424

Chao, W.-L.: Face recognition. GICE, National Taiwan University, Available online: https://www.orcam.com/en/myeye2/ accessed on 21 May 2022

Yang, S. Luo, P., Loy, C. C., Tang, T.: WIDER FACE: a face detection benchmark. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 5525–5533, (2016) https://doi.org/10.1109/CVPR.2016.596

Scherhag, U., Rathgeb, C., Merkle, J., Busch, C.: Deep face representations for differential morphing attack detection. IEEE Trans. Inf. Forensics Secur. 15, 3625–3639 (2020). https://doi.org/10.1109/TIFS.2020.2994750

Khan, K., Khan, R.U., Ali, J., Uddin, I., Khan, S., Roh, B.H.: Race classification using deep learning. Comput. Mater. Contin. 68(3), 3483–3498 (2021). https://doi.org/10.32604/cmc.2021.016535

N. I. o. S. a. T. NIST.: Face recognition technology (FERET). https://www.nist.gov/programs-projects/face-recognition-technology-feret. (2021)

Dwivedi, H., Android Instructor.: Comparing MobileNet models in TensorFlow. (2019) https://www.kdnuggets.com/2019/03/comparing-mobilenet-models-tensorflow.html accessed on 8 Mar 2022

Isuyama, V. K., Albertini, B. D. C.: Comparison of convolutional neural network models for mobile devices. Esc. Politecnica Univ. Sao Paulo (USP), Brazil, pp. 73–83, (2021) https://doi.org/10.5753/wperformance.2021.15724.

Wang, W., Li, Y., Zou, T., Wang, X., You, J., Luo, Y.: A novel image classification approach via dense-Mobilenet models. Mob. Inf. Syst. (2020). https://doi.org/10.1155/2020/7602384

Kadhim, T.A., Smaoui Zghal, N., Hariri, W., Ben Aissa, D.: Face recognition in multiple variations using deep learning and convolutional neural networks. In: 9th Int. Conf. Sci. Electron. Technol. Inf. Telecommun. (SETIT’22), 2022., no. 1, (2022)

Khan, S., Rahmani, H., Shah, S.A.A., Bennamoun, M.: A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8(1), 1–207 (2018). https://doi.org/10.2200/s00822ed1v01y201712cov015

Liu, Y., Zhai, G., Zhao, D., Liu, X.: Frame rate and perceptual quality for HD video. In: Springer Int. Publ. Switz., vol. 9315, (2015) https://doi.org/10.1007/978-3-319-24078-7

Kiran, T.T.J.: Computer vision accuracy analysis with deep learning model using TensorFlow. Int. J. Innov. Res. Comput. Sci. Technol. 8(4), 319–325 (2020). https://doi.org/10.2139/ssrn.3673214

Maruseac, M.: Support for 32 bits architecture. (2019) https://github.com/tensorflow/tensorflow/issues/32315

Adi, P. D. P., Kitagawa, A., Akita, J.: Finger robotic control use M5Stack board and MQTT protocol based. In: 7th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2020—Proc., no. October, pp. 1–6, (2020) https://doi.org/10.1109/ICITACEE50144.2020.9239170

Ahmed, H. M., Rasheed, R. T.: A Raspberry Pi real-time identification system on face recognition. In: Proc. 2020 1st Inf. Technol. to Enhanc. E-Learning other Appl. Conf. IT-ELA 2020, pp. 89–93, (2020) https://doi.org/10.1109/IT-ELA50150.2020.9253107

Nikisins, O., Fuksis, R., Kadikis, A., Greitans, M.: Face recognition system on raspberry Pi. In: 2015 5th Int. Work. Comput. Sci. Eng. Inf. Process. Control Eng. WCSE 2015-IPCE, no. April, (2015) https://doi.org/10.18178/wcse.2015.04.054

Suchitra, Suja, P., Tripathi, S.: Real-time emotion recognition from facial images using Raspberry Pi II. In: 3rd Int. Conf. Signal Process. Integr. Networks, SPIN 2016, pp. 666–670, (2016) https://doi.org/10.1109/SPIN.2016.7566780

Lu, J., Fu, X., Zhang, T.: A smart system for face detection with spatial correlation improvement in IoT environment. In: 2017 IEEE SmartWorld Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, pp. 1–4, (2018) https://doi.org/10.1109/UIC-ATC.2017.8397550

Gsponer, D.: IoT: building a Raspberry Pi security system with facial recognition. Haaga-Helia (2018)

Kak, S. F., Mustafa, F. M.: Smart home management system based on face recognition index in real-time. In: 2019 Int. Conf. Adv. Sci. Eng. ICOASE 2019, pp. 40–45, (2019) https://doi.org/10.1109/ICOASE.2019.8723673

Munir, A., Kashif Ehsan, S., Mohsin Raza, S. M., Mudassir, M.: Face and speech recognition based smart home. In: 2019 Int. Conf. Eng. Emerg. Technol. ICEET 2019, pp. 1–5, (2019) https://doi.org/10.1109/CEET1.2019.8711849

Saputra, R., Surantha, N.: Smart and real-time door lock system for an elderly user based on face recognition. Bull. Electr. Eng. Inform. 10(3), 1345–1355 (2021). https://doi.org/10.11591/eei.v10i3.2955

Orna, G., Benitez, D. S., Perez, N.: A low-cost embedded facial recognition system for door access control using deep learning. In: 2020 IEEE Andescon, Andescon 2020, pp. 0–5, (2020) https://doi.org/10.1109/ANDESCON50619.2020.9271984

Gunawan, T.S., Gani, M.H.H., Rahman, F.D.A., Kartiwi, M.: Development of face recognition on raspberry pi for security enhancement of smart home system. Indones. J. Electr. Eng. Inform. 5(4), 317–325 (2017). https://doi.org/10.11591/ijeei.v5i4.361

Vamsi, T.K., Sai, K.C., Vijayalakshmi, M.: Face recognition based door unlocking system using Raspberry Pi Thulluri. Int. J. Adv. Res. Ideas Innov. Technol. 5(2), 1320–1324 (2019)

Hasban, A. S. et al.: Face recognition for Student Attendance using Raspberry Pi. In: APACE 2019 - 2019 IEEE Asia–Pacific Conf. Appl. Electromagn. Proc., no. November, pp. 1–5, (2019) https://doi.org/10.1109/APACE47377.2019.9020758

Nagpal, G. S., Singh, G., Singh, J., Yadav, N.: Facial detection and recognition using OpenCV on Raspberry Pi Zero. In: Proc. - IEEE 2018 Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2018, pp. 945–950, (2018) https://doi.org/10.1109/ICACCCN.2018.8748389

Singh, S., Ramya, R., Sushma, V., Roshini, S., Pavithra, R.: Facial recognition using machine learning algorithms on Raspberry Pi. In: 4th Int. Conf. Electr. Electron. Commun. Comput. Technol. Optim. Tech. ICEECCOT 2019, pp. 197–202, (2019) https://doi.org/10.1109/ICEECCOT46775.2019.9114716

Nadafa, R.A., Hatturea, S.M., Bonala, V.M., Naikb, S.P.: Home security against human intrusion using Raspberry Pi. Procedia Comput. Sci. 167, 1811–1820 (2020). https://doi.org/10.1016/j.procs.2020.03.200

Rok Novosel, B. M., Ziga Emersic, P. P., Struc V.: Face recognition with Raspberry Pi for IoT environments. In: ERK Portorož, no. September, pp. 477–480, (2017) https://lmi.fe.uni-lj.si/wp-content/uploads/2019/08/novoselface_recognition.pdf

Parthornratt, T., Burapanonte, N., Gunjarueg, W.: People identification and counting system using Raspberry pi. In: 2016 Int. Conf. Electron. Information, Commun., pp. 1–5, (2016)

Preetha, J., Manirathnam, M., Chaitanya, A., Raj, R.P.: Raspberry Pi based face recognition system. Int. J. Eng. Res. Technol. 8(08), 1–4 (2020)