A dynamic XFEM formulation for crack identification
Tóm tắt
Nelder–Mead (NM) and Quasi-Newton (QN) optimization methods are used for the numerical solution of crack identification problems in elastodynamics. Fracture is modeled by the eXtended Finite Element Method. The Newmark-β method with Rayleigh damping is employed for the time integration. The effects of various dynamical test loads on the crack identification are investigated. For a time-harmonic excitation with a single frequency and a short-duration signal measured along part of the external boundary, the crack is detected through the solution of an inverse time-dependent problem. Compared to the static load, we show that the dynamic loads are more effective for crack detection problems. Moreover, we tested different dynamic loads and find that NM method works more efficient under the harmonic load than the pounding load while the QN method achieves almost the same results for both load types.
Tài liệu tham khảo
Alessandrini, G., Valenzuela, A.D.: Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34(3), 913–921 (1996)
Belytschko, T., Lu, Y.Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)
Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)
Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math. 6(1), 76–90 (1970)
Bryan, K., Vogelius, M.: A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements. SIAM J. Math. Anal. 23(4), 950–958 (1992)
Chatzi, E.N., Hiriyur, B., Waisman, H., Smyth, A.W.: Experimental application and enhancement of the XFEM–GA algorithm for the detection of flaws in structures. Comput. Struct. 89(7), 556–570 (2011)
Chomette, B., Fernandes, A., Sinou, J.J.: Cracks detection using active modal damping and piezoelectric components. Shock Vib. 20(4), 619–631 (2013)
Chopra, A.K.: Dynamics of Structures, vol. 3. Prentice Hall, New Jersey (1995)
Doebling, S.W., Farrar, C.R., Prime, M.B., et al.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)
Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)
Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)
Friedman, A., Vogelius, M.: Determining cracks by boundary measurements. Indiana Univ. Math. J. 38(3), 527–556 (1989)
Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)
Hughes, T.J.: The finite element method: linear static and dynamic finite element analysis. Courier Corporation, reprint (2012). Originally published: Prentice-Hall, New Jersey (1987)
Ishak, S., Liu, G., Shang, H., Lim, S.: Non-destructive evaluation of horizontal crack detection in beams using transverse impact. J. Sound Vib. 252(2), 343–360 (2002)
Katsikadelis, J.T.: Boundary Elements: Theory and Applications: Theory and Applications. Elsevier, London (2002)
Kelley, C.T.: Iterative Methods for Optimization, vol. 18. SIAM, Philadelphia (1999)
Kim, H., Seo, J.K.: Unique determination of a collection of a finite number of cracks from two boundary measurements. SIAM J. Math. Anal. 27(5), 1336–1340 (1996)
Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, vol. 120. Springer, Berlin (2011)
Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High-order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64(3), 354–381 (2005)
Lahmer, T.: Modified landweber iterations in a multilevel algorithm applied to inverse problems in piezoelectricity. J. Inverse Ill-posed Probl. 17(6), 585–593 (2009)
Liu, G., Chen, S.: Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm. Comput. Methods Appl. Mech. Eng. 190(42), 5505–5514 (2001)
Liu, G.R., Han, X.: Computational inverse techniques in nondestructive evaluation. CRC Press, Boca Raton (2004)
Liu, X., Deng, Y., Zeng, Z., Udpa, L., Udpa, S.S.: Model-based inversion technique using element-free Galerkin method and state space search. IEEE Trans. Magn. 45(3), 1486–1489 (2009)
McKinnon, K.I.: Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J. Optim. 9(1), 148–158 (1998)
Michaels, T.E., Michaels, J.E.: Sparse ultrasonic trasnducer array for structural health monitoring. In: AIP Conference Proceedings, IOP Institute of Physics Publishing Ltd, B, pp 1468–1475 (2003)
Nanthakumar, S., Lahmer, T., Rabczuk, T.: Detection of flaws in piezoelectric structures using extended FEM. Int. J. Numer. Methods Eng. 96(6), 373–389 (2013)
Nanthakumar, S., Lahmer, T., Rabczuk, T.: Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Comput. Methods Appl. Mech. Eng. 275, 98–112 (2014)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
Rabczuk, T., Belytschko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61(13), 2316–2343 (2004)
Rabczuk, T., Belytschko, T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196(29), 2777–2799 (2007)
Rabczuk, T., Bordas, S., Zi, G.: On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88(23), 1391–1411 (2010)
Rabinovich, D., Givoli, D., Vigdergauz, S.: XFEM-based crack detection scheme using a genetic algorithm. Int. J. Numer. Methods Eng. 71(9), 1051–1080 (2007)
Rabinovich, D., Givoli, D., Vigdergauz, S.: Crack identification by arrival timeusing XFEM and a genetic algorithm. Int. J. Numer. Methods Eng. 77(3), 337–359 (2009)
Réthoré, J., Gravouil, A., Combescure, A.: A combined space–time extended finite element method. Int. J. Numer. Methods Eng. 64(2), 260–284 (2005a)
Réthoré, J., Gravouil, A., Combescure, A.: An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int. J. Numer. Methods Eng. 63(5), 631–659 (2005b)
Salawu, O.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)
Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)
Stavroulakis, G.E.: Inverse and crack identification problems in engineering mechanics, vol. 46. Springer, Berlin (2000)
Stolarska, M., Chopp, D., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51(8), 943–960 (2001)
Waisman, H., Chatzi, E., Smyth, A.W.: Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. Int. J. Numer. Methods Eng. 82(3), 303–328 (2010)
Wu, Z., Liu, G.R., Han, X.: An inverse procedure for crack detection in anisotropic laminated plates using elastic waves. Eng. Comput. 18(2), 116–123 (2002)
Zhuang, X., Augarde, C.: Aspects of the use of orthogonal basis functions in the element-free Galerkin method. Int.J. Numer. Methods Eng. 81(3), 366–380 (2010)
Zhuang, X., Augarde, C., Mathisen, K.: Fracture modeling using meshless methods and level sets in 3D: framework and modeling. Int. J. Numer. Methods Eng. 92(11), 969–998 (2012a)
Zhuang, X., Heaney, C., Augarde, C.: On error control in the element-free Galerkin method. Eng. Anal. Bound. Elem. 36(3), 351–360 (2012b)