A double-crystal monochromator for neutron stress diffractometry

Springer Science and Business Media LLC - Tập 60 - Trang 526-532 - 2017
V. T. Em1, A. M. Balagurov2, V. P. Glazkov1, I. D. Karpov1, P. Mikula3, N. F. Miron1, V. A. Somenkov1, V. V. Sumin2, J. Šaroun3, M. N. Shushunov1
1National Research Center Kurchatov Institute, Moscow, Russia
2Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia
3Nuclear Physics Institute, Academy of Sciences of Czech Republic, Rez, Czech Republic

Tóm tắt

The problem of developing a dedicated neutron diffractometer for placement on a horizontal reactor channel to measure internal stresses in bulk materials and components under conditions of a limited space is considered. It is shown that the use of a double-crystal monochromator composed of pyrolytic graphite and a focusing bent perfect silicon single crystal is the optimal solution to this problem. The diffractometer with such a monochromator that is installed at the IR-8 reactor of the National Research Center Kurchatov Institute is comparable in luminosity and resolution at a reactor power of 6 MW to modern stress diffractometers at more powerful reactors.

Tài liệu tham khảo

Hutchings, M.T., Withers, P.J., Holden, T.M., and Lorentzen, T., Introduction to the Characterization of Residual Stress by Neutron Diffraction, London Taylor and Francis, 2005. doi 10.1201/9780203402818 Withers, P.J., J. Appl. Cryst., 2004, vol. 37, no. 4, p. 596. doi 10.1107/S0021889804012737 Withers, P.J., J. Appl. Cryst., 2004, vol. 37, no. 4, p. 607. doi 10.1107/S0021889804012750 Santisteban, J.R., Daymond, M.R., James, J.A., and Edwards, L., J. Appl. Cryst., 2006, vol. 39, no. 6, p. 812. doi 10.1107/S0021889806042245 Nozik, Yu.Z., Ozerov, R.P., and Henning, K., Strukturmaya neitronografiya (Structural Neutronography), Moscow Atomizdat, 1979. Pirling, T., Bruno, G., and Withers, P.J., Mater. Sci. Eng., A, 2006, vol. 437, no. 1, p.139. doi 10.1016/j. msea.2006.04.083 Hofmann, M., Schneider, R., Seidl, G.A., Rebelo-Kornmeier, J., Wimpory, R.C., Garbe, U., and Brokmeier, H.G., Physica B, 2006, vols. 385-386, part 2, p.1035. doi 10.1016/j.physb.2006.05.331 Kirstein, O., Garbe, U., and Luzin, V., Mater. Sci. Forum., 2010, vol. 652, p. 86. doi 10.4028/www.scientific.net/MSF.652.86 Lee, C., Moon, M., Em, V.T., Choi, E., Cheon, J., Nam, U., and Kong, K., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip., 2005, vol. 545, nos. 1-2, p. 480. doi 10.1016/j.nima. 2005.01.337 Mikula, P., Kulda, J., Lukáš, P., Vrána, M., and Wagner, V., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip., 1994, vol. 338, no. 1, p. 18. doi 10.1016/0168-9002(94)90156-2 Stoica, A.D., Popovici, M., Hubbard, C.R., and Spooner, S., Proc. Intern. Conf. on Residual Stresses (ICRS-6), Oxford, UK,2000, p. 1264. Moon, M.K., Lee, C.H., Em, V.T., Mikula, P., Hong, K.P., Choi, Y.N., Cheon, J.K., Choi, Y.N., Kim, S.A., Kim, S.K., and Jin, K.C., Physica B: Condens. Matter, 2005, vol. 369, nos. 1-4, p. 1. doi 10.1016/j.physb.2005. 06.041 Entin, I.R., Glazkov, V.P., Moryakov, V.P., Naumov, I.V., Somenkov, V.A., and Shil’shtein, S.Sh., Instrum. Exp. Tech., 1976, vol. 19, no. 5, p. 1310. Freund, A., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip., 1983, vol. 213, p. 495. doi 10.1016/0167-5087(83)90447-7 Šaroun, J., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip., 2004, vol. 529, sp. no., p. 162. doi 10.1016/j.nima.2004.04.197 Johnson, M.W. and Daymond, M.R., J. Appl. Cryst., 2002, vol. 35, no. 1, p. 49. doi 10.1107/S002188980101891X Woo, W., Em, V.T., Seong, B.S., Mikula, P., Shin, E., Joo, J., and Kang, M., J. Appl. Cryst., 2011, vol. 44, no. 4, p. 747. doi 10.1107/S0021889811018899 http://www.ncnr.nist.gov/instruments/bt8/19 http://www.ansto.gov.au/ResearchHub/Bragg/Facilities/Instruments/