A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Casas, J.A., A.F. Mohedano, and F. García-Ochoa, 2000, Viscosity of guar gum and xanthan/guar gum mixture solutions, J. Sci. Food Agric. 80, 1722–1727.
Chen, L.S. and D.Y. Chen, 2003, Permalloy inductor based instrument that measures the sedimentation constant of magnetorheological fluids, Rev. Sci. Instrum. 74, 3566–3568.
Climent, E. and M.R. Maxey, 2003, Numerical simulations of random suspensions at finite Reynolds numbers, Int. J. Multiph. Flow 29, 579–601.
Climent, E., M.R. Maxey, and G.E. Karniadakis, 2004, Dynamics of self-assembled chaining in magnetorheological fluids, Langmuir 20, 507–513.
Dodbiba, G., H.S. Park, K. Okaya, and T. Fujita, 2008, Investigating magnetorheological properties of a mixture of two types of carbonyl iron powders suspended in an ionic liquid, J. Magn. Magn. Mater. 320, 1322–1327.
Douglas, J.F., J.M. Gasoriek, J.A. Swaffield, and L.B. Jack, 2005, Fluid Mechanics, 5th ed., Pearson, London.
Falkovich, G., 2011, Fluid Mechanics: A Short Course for Physicists, Cambridge University Press, New York.
Fang, C., B.Y. Zhao, L.S. Chen, Q. Wu, N. Liu, and K.A. Hu, 2005, The effect of the green additive guar gum on the properties of magnetorheological fluid, Smart Mater. Struct. 14, N1–N5.
Fang, F.F., H.J. Choi, and M.S. Jhon, 2009, Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function, Colloids Surf., A-Physicochem. Eng. Asp. 351, 46–51.
Haberman, W.L. and R.M. Sayre, 1958, Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes, Hydromechanics Laboratory Research and Development Report, No. DTMB-1143, David Taylor Model Basin, Washington DC.
Han, K., Y.T. Feng, and D.R.J. Owen, 2010, Three-dimensional modelling and simulation of magnetorheological fluids, Int. J. Numer. Methods Eng. 84, 1273–1302.
Hato, M.J., H.J. Choi, H.H. Sim, B.O. Park, and S.S. Ray, 2011, Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties, Colloids Surf., A-Physicochem. Eng. Asp. 377, 103–109.
Jang, I.B., H.B. Kim, J.Y. Lee, J.L. You, H.J. Choi, and M.S. Jhon, 2005, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids, J. Appl. Phys. 97, 10Q912.
Jolly, M.R., J.W. Bender, and J.D. Carlson, 1999, Properties and applications of commercial magnetorheological fluids, J. Intell. Mater. Syst. Struct. 10, 5–13.
Kozlowska, J. and M. Leonowicz, 2013, Magnetorheological fluids as a prospective component of composite armours, Compos. Theory and Pract. 13, 227–231.
Kruggel-Emden, H., E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer, 2007, Review and extension of normal force models for the discrete element method, Powder Technol. 171, 157–173.
Kruggel-Emden, H., S. Wirtz, and V. Scherer, 2008, A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior, Chem. Eng. Sci. 63, 1523–1541.
Lim, S.T., H.J. Choi, and M.S. Jhon, 2005, Magnetorheological characterization of carbonyl iron-organoclay suspensions, IEEE Trans. Magn. 41, 3745–3747.
López-López, M.T., G. Vertelov, G. Bossis, P. Kuzhir, and J.D.G. Durán, 2007, New magnetorheological fluids based on magnetic fibers, J. Mater. Chem. 17, 3839–3844.
Loth, E., 2008, Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182, 342–353.
Ly, H.V., F. Reitich, M.R. Jolly, H.T. Banks, and K. Ito, 1999, Simulations of particle dynamics in magnetorheological fluids, J. Comput. Phys. 155, 160–177.
Maxey, M.R., B.K. Patel, E.J. Chang, L.P. Wang, 1997, Simulations of dispersed turbulent multiphase flow, Fluid Dyn. Res. 20, 143–156.
McManus, S.J., K.S. Clair, P.E. Boileau, J. Boutin, and S. Rakheja, 2002, Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper, J. Sound Vibr. 253, 313–327.
Phule, P.P., 2001, Magnetorheological (MR) fluids: Principles and applications, Smart Mater. Bull. 2001, 7–10.
Pöschel, T. and T. Schwager, 2005, Computational Granular Dynamics: Models and Algorithms, Springer-Verlag Berlin Heidelberg, New York.
Ren, B., W. Zhong, Y. Chen, X. Chen, B. Jin, Z. Yuan, and Y. Lu, 2012, CFD-DEM simulation of spouting of corn-shaped particles, Particuology 10, 562–572.
Shah, K. and S.-B. Choi, 2015, The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids, Smart Mater. Struct. 24, 015004.
Son, K.J. and E.P. Fahrenthold, 2012, Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material, Smart Mater. Struct. 21, 075012.
Son, K.J. and E.P. Fahrenthold, 2014, Simulation of orbital debris impact on porous ceramic tiles, J. Spacecr. Rockets 51, 1349–1359.
Sun, R. and H. Xiao, 2016, SediFoam: A general-purpose, opensource CFD-DEM solver for particle-laden flow with emphasis on sediment transport, Comput. Geosci. 89, 207–219.
Tsuji, Y., T. Tanaka, and T. Ishida, 1992, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71, 239–250.
Wu, W.P., B.Y. Zhao, Q. Wu, L.S. Chen, and K.A. Hu, 2006, The strengthening effect of guar gum on the yield stress of magnetorheological fluid, Smart Mater. Struct. 15, N94–N98.
Yao, G.Z., F.F. Yap, G. Chen, W.H. Li, and S.H. Yeo, 2002, MR damper and its application for semi-active control of vehicle suspension system, Mechatronics 12, 963–973.