A discrete Itô calculus approach to He’s framework for multi-factor discrete markets
Tóm tắt
In the present paper, a discrete version of Itô’s formula for a class of multi-dimensional random walk is introduced and applied to the study of a discrete-time complete market model which we call He’s framework. The formula unifies continuous-time and discrete-time settings and by regarding the latter as the finite difference scheme of the former, the order of convergence is obtained. The result shows that He’s framework cannot be of order 1 scheme except for the one dimensional case.
Tài liệu tham khảo
Akahori, J. (2006). Local time in parisian walkways. http://www.citebase.org/abstract?id=oai:arXiv.org:math/0604395
Cox, J., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simple approach. Journal of Financial Economics, 7, 229–263.
Duffie, D. (1996). Dynamic asset pricing theory (2nd ed.). Princeton University Press, Princeton.
Ethier, S. N., & Kurtz, T. G. (1986). Markov Processes. New York: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc.
Fujita, T. (2002). Finance no tame no Kakuritu Kaiseki. Kodansha, Tokyo. (in Japanese), [Stochastic Caluculus for Finance].
Fujita, T. (2003). A random walk analogue of Lévy’s theorem. Preprint, Hitotsubashi University.
He, H. (1990). Convergence from discrete- to continuous-time contingent claims prices. Review of Financial Studies, 3, 523–546.
Kudzhma, R. (1982). Itô’s formula for a random walk. Litovsk. Mat. sb., 22, 122–127.
Protter, P. E. (2004). Stochastic integration and differential equations, vol. 21 of applications of mathematics (New York). Berlin: Springer-Verlag.
Richtmyer, R. D., & Morton, K. W. (1994). Difference methods for initial-value problems. Malabar, FL: Robert E. Krieger Publishing Co. Inc.
Serre, J.-P. (1978). Représentations linéaires des groupes finis. Hermann, Paris. [English translation Linear Representations of Finite Groups. Translated from the second French edition by Leonard L. Scott. Graduate texts in mathematics, vol. 42. New York-Heidelberg: Springer-Verlag, 1977. ISBN 0-387-90190-6].
Szabados, T. (1990). A discrete Itô’s formula. In Limit theorems in probability and statistics (Pécs, 1989), vol. 57 of Colloq. Math. Soc. János Bolyai, (pp. 491–502). North-Holland, Amsterdam.